The existence of renormalized solution for quasilinear parabolic problem with variable exponents and measure data
Abstract
In this paper, the study of the existence of a renormalized solution for quasilinear parabolic
problem with variable exponents and measure data. The model is:
u_{t}-\text{div}(\left\vert \nabla u\right\vert ^{p(x)-2}\nabla u)+\lambda
\left\vert u\right\vert ^{p(x)-2}u=\mu
\text{ } &
\text{in}\hspace{0.5cm}Q=\Omega \times ]0,T[,\\
u=0 & \text{on}\hspace{0.5cm}\Sigma =\partial \Omega \times ]0,T[, \\
u(.,0)=u_{0}(.) & \text{in}\hspace{0.5cm}\Omega,
where $ \lambda>0$ and $ T $ is any positive constant, $ \mu\in\mathcal{M}_{0}(Q) $ is any measure with bounded variation over $ Q=\Omega \times ]0,T[ $.
Downloads
References
E. Azroula, M. B. Benboubkera, M. Rhoudaf, On some p(x)-quasilinear problem with right-hand side measure, Mathematics and Computers in Simulation, Volume 102 , 117- 130, (2014). https://doi.org/10.1016/j.matcom.2013.09.009
D. Blanchard, and F. Murat, Renormalised solutions of nonlinear parabolic problems with L1 data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect., A127, 1137-1152,(1997). https://doi.org/10.1017/S0308210500026986
D. Blanchard , F. Murat, and H. Redwane, Existence et unicit'e de la solution reormalis'ee d'un probl'eme parabolique assez general, C. R. Acad. Sci. Paris S'er., I329 , 575-580,(1999). https://doi.org/10.1016/S0764-4442(00)80004-X
Blanchard, D., Murat, F., and Redwane, H., Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Differential Equations, 177, 331-374 (2001). https://doi.org/10.1006/jdeq.2000.4013
D.Blanchard,F. Petitta and H. Redwane, Renormalized solutions of nonlinear parabolic equations with diffuse measure data, Manuscripta Math. 141, 601-635, (2013). https://doi.org/10.1007/s00229-012-0585-7
Boccardo, L., Dall'Aglio, A., Gallou¨et T., and Orsina, L., Nonlinear parabolic equa- tions with measure data, J. Funct. Anal., 147, 237-258, (1997). https://doi.org/10.1006/jfan.1996.3040
L. Boccardo, T. Gallouet, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 , no. 1, 149-169,(1989). https://doi.org/10.1016/0022-1236(89)90005-0
T. M. Bendahmane, P. Wittbold, A.Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 -data . J.Differential Equations 249, 1483-1515, (2010). https://doi.org/10.1016/j.jde.2010.05.011
M. Badr Benboubker, H. Chrayteh, M. EL Moumni and H. Hjiaj, Entropy and Renormalized Solutions for Nonlinear Elliptic Problem Involving Variable Exponent and Measure Data, Acta Mathematica Sinica, English Series Jan., Vol. 31, No. 1, pp. 151-169, (2015). https://doi.org/10.1007/s10114-015-3555-7
Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66, 1383-1406, (2006). https://doi.org/10.1137/050624522
Di Perna, R. J. and P. L. Lions, P. L., On the Cauchy problem for Boltzmann equations : Global existence and weak stability, Ann. Math., 130, 321-366, (1989). https://doi.org/10.2307/1971423
B. El Hamdaoui, J. Bennouna, and A. Aberqi, Renormalized Solutions for Nonlinear Parabolic Systems in the Lebesgue Sobolev Spaces with Variable Exponents, Journal of Mathematical Physics, Analysis, Geometry, Vol. 14, No. 1, pp. 27-53, (2018). https://doi.org/10.15407/mag14.01.027
X. L. Fan and D. Zhao, On the spaces Lp(x) (U) and W m;p(x) (U) ,J. Math. Anal. Appl. 263, 424-446, (2001). https://doi.org/10.1006/jmaa.2000.7617
R. Landes, On the existence of weak solutions for quasilinear parabolic initial- boundary problems, Proc. Roy. Soc. Edinburgh Sect. A 89, 321-366, (1981). https://doi.org/10.1017/S0308210500020242
J. L. Lions, Quelques m'ethodes de r'esolution des probl'emes aux limites non lin'eaires . Dunod et Gauthier-Villars (1969).
S. Ouaro and U. Traore, p(.)-parabolic capacity and decomposition of measures , Annals of the University of Craiova, Mathematics and Computer Science Series. Volume 44(1), Pages 30-63, (2017).
F. Petitta, Renormalized solutions of nonlinear parabolic equations with general measure data , Ann. Mat. Pura Appl. Vol. 187, no. 4, 563-604, (2008). https://doi.org/10.1007/s10231-007-0057-y
F. Petitta., A. C. Ponce, , A. Porretta, Approximation of diffuse measures for parabolic capacities, C. R. Math. Acad. Sci. Paris 346 , no. 3-4(2008) , 161-166. https://doi.org/10.1016/j.crma.2007.12.002
F. Petitta., A. C. Ponce, , A. Porretta, Diffuse measures and nonlinear parabolic equations, J. Evol. Equations, 11 (4) , 861-905 (2011). https://doi.org/10.1007/s00028-011-0115-1
F. Petitta and H. Redwane, Renormalized solutions of nonlinear parabolic equations with diffuse measure data, Manuscripta Mathematica volume 141, pages601-635,(2013). https://doi.org/10.1007/s00229-012-0585-7
J. Simon, Compact sets in Lp(0, T;B), Ann. Mat. Pura Appl., 146, 65-96, (1987). https://doi.org/10.1007/BF01762360
C. Zhang, Entropy solutions for nonlinear elliptic equations with variable exponents . Electronic Journal of Differential Equations, Vol. 2014, No. 92, pp. 1-14,(2014).
C. Zhang, S. Zhou, Renormalized and entropy solution for nonlinear parabolic equations with variable exponents and L1 data , J.Differential Equations 248, 1376-1400, (2010). https://doi.org/10.1016/j.jde.2009.11.024
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).