Operators in terms of $*$ and $\psi$
Abstract
Through this paper we consider three operators in terms of operators $*$ and $\psi$ in an ideal topological space. Many properties of these operators have been discussed. Characterizations of Hayashi-Samuel spaces are obtained as applications of the properties.
Downloads
References
Al-Omari, A., Al-Saadi, H., A topology via ω-local functions in ideal spaces, Mathematics, 60 (83), 103-110, (2018). https://doi.org/10.24193/mathcluj.2018.2.01 DOI: https://doi.org/10.24193/mathcluj.2018.2.01
Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], (1999).
Dontchev, J., Ganster, M., Rose, D., Ideal resolvability, Topology Appl. 93, 1-16, (1999). https://doi.org/10.1016/S0166-8641(97)00257-5 DOI: https://doi.org/10.1016/S0166-8641(97)00257-5
Hamlett, T. R., Jankovic, D., Ideals in topological spaces and the set operator ψ , Boll. Un. Mat.Ital. 7 (4-B), 863-874, (1990).
Hashimoto, H., On the *-topology and its applications, Fund. Math. 91, 5-10, (1976). https://doi.org/10.4064/fm-91-1-5-10 DOI: https://doi.org/10.4064/fm-91-1-5-10
Hayashi, E., Topologies defined by local properties, Math. Ann. 156, 205-215, (1964). https://doi.org/10.1007/BF01363287 DOI: https://doi.org/10.1007/BF01363287
Jankovic, D., Hamlett, T. R., New topologies from old via ideals, Amer. Math. Monthly, 97, 295-310, (1990). https://doi.org/10.1080/00029890.1990.11995593 DOI: https://doi.org/10.1080/00029890.1990.11995593
Kuratowski, K., Topology, Vol. I, New York, Academic Press, (1966).
Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82 (3), 233-243, (2012). https://doi.org/10.1007/s40010-012-0039-3 DOI: https://doi.org/10.1007/s40010-012-0039-3
Modak, S., Bandyopadhyay, C., A note on ψ-operator, Bull. Malays. Math. Sci. Soc. (2) 30(1), 43-48, (2007).
Newcomb, R. L., Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
Njastad, O., Remarks on topologies defined by local properties, Avh. Norske Vid. Akad. Oslo I(N.S), 8, 1-16, (1966).
Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36 (3), 297-312, (1986).
Samuel, P., A topology formed from a given topology and ideal, J. London Math. Soc. 10, 409-416, (1975). https://doi.org/10.1112/jlms/s2-10.4.409 DOI: https://doi.org/10.1112/jlms/s2-10.4.409
Selim, Sk., Noiri, T., Modak, S., Some set-operators on ideal topological spaces (submitted).
R. Vaidyanathswamy, The localization theory in set-topology, Proc. Indian Acad. Sci. 20, 51-61, (1945). https://doi.org/10.1007/BF03048958 DOI: https://doi.org/10.1007/BF03048958
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).