Cayley approximation operator with an application to a system of set-valued Cayley type inclusions

  • Mohd Akram Islamic University of Madinah
  • J. W. Chen Southwest University
  • Mohd Dilshad University of Tabuk

Abstract

In this paper, we introduce and study a system of set-valued Cayley type inclusions involving Cayley operator and (H; )-monotone operator in real Banach spaces. We show that Cayley operator associated with the (H; )-monotone operator is Lipschitz type continuous. Using the proximal point operator technique, we have established a fixed point formulation for the system of set-valued Cayley type inclusions. Further, the existence and uniqueness of the approximate solution are proved. Moreover, we suggest an iterative algorithm for the system of set-valued Cayley type inclusions and discuss the strong convergence of the sequences generated by the proposed algorithm. Some examples are constructed to illustrate some concepts used in this paper.

Downloads

Download data is not yet available.

References

Akram, M., Chen, J. W., Dilshad, M., Generalized yosida approximation operator with an application to a system of yosida inclusions, J. Nonlinear Funct. Anal. 2018, doi.org/10.23952/jnfa.2018.17 (2018). https://doi.org/10.23952/jnfa.2018.17

Ali, I., Ahmad, R., Wen, C. F., Cayley inclusion problem involving XOR-operation, Mathematics 7(3), 302, 12pp., (2019). https://doi.org/10.3390/math7030302

Alansari, M., Akram, M., Dilshad, M., Iterative algorithms for a generalized system of mixed variational-like inclusion problems and altering points problem, Stat. Optim. Inf. Comput. 8, 549-564, (2020). https://doi.org/10.19139/soic-2310-5070-884

Baiocchi, C., Capelo, A., Variational and Quasi Variational Inequalities: Applications to free boundary problems, Wiley, New York, (984).

Bruck, R. E., A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone operator in Hilbert space, J. Math. Anal. Appl. 48, 114-126, (1974). https://doi.org/10.1016/0022-247X(74)90219-4

Bruck, R. E., Reich, S., A general convergence principle in nonlinear functional analysis, Nonlinear Anal. 4, 939-950, (1980). https://doi.org/10.1016/0362-546X(80)90006-1

Ceng, L. C., Guu, S. M., Yao, J. C., Hybrid viscosity CQ method for finding a common solution of a variational inequality, a general system of variational inequalities, and a fixed point problem, Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-313

Chang, S. S., Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 248, 438-454, (2000). https://doi.org/10.1006/jmaa.2000.6919

Chen, J. Y., Wong, N. C., Yao, J. C., Algorithms for generalized co-complementarity problems in Banach spaces, Comput. Math. Appl. 43, 49-54, (2002). https://doi.org/10.1016/S0898-1221(01)00270-X

Dilshad, M., Akram, M., Multi-valued variational inclusion problem in Hadamard manifolds, Bulletin of Mathematical Analysis and Applications, 12(1), 29-40, (2020).

Ding, X. P., Salahuddin, A system of general nonlinear variational inclusions in Banach spaces, Appl. Math. Mech. 36(12), 1663-1672, (2015). https://doi.org/10.1007/s10483-015-2001-6

Fang, Y. P., Huang, N. J., H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17(6), 647-653, (2004). https://doi.org/10.1016/S0893-9659(04)90099-7

Jung, J. S., Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces, Nonlinear Anal. 72(1), 449-459, (2010). https://doi.org/10.1016/j.na.2009.06.079

Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106, 226-240, (2000). https://doi.org/10.1006/jath.2000.3493

Kim, S.H., Lee, B. S., Salahuddin, Fuzzy variational inclusions with (H, φ, ψ)-η-monotone mappings in Banach Spaces, J. Adv. Res. Appl. Math. 4(1), 10-22, (2012). https://doi.org/10.5373/jaram.870.040511

Luo, X. P., Huang, N. J., (H, φ)-η-monotone operators in Banach spaces with an application to variational inclusions, Appl. Math. Comput. 216, 1131-1139, (2010). https://doi.org/10.1016/j.amc.2010.02.005

Nadler, S. B., Multi-valued contraction mappings, Pacific J. Math. 30, 475-488, (1969). https://doi.org/10.2140/pjm.1969.30.475

Peng, J. W., Wang, Y., David, S. S., Yao, J. C., Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems, J. Inequal. Appl. 2008: 720371. (2008). https://doi.org/10.1155/2008/720371

Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14, 877-898, (1976). https://doi.org/10.1137/0314056

Sahu, D. R., Ansari, Q. H., Yao, J. C., The prox-Tikhonov-like forward-backward method and applications, Taiwan. J. Math. 19, 481-503, (2015). https://doi.org/10.11650/tjm.19.2015.4972

Shan, S. Q., Xiao, Y. B., Huang, N. J., A new system of generalized implicit set-valued variational inclusions in Banach spaces, Nonlinear Funct. Anal. Appl. 22(5), 1091-1105, (2017).

Takahashi, S., Takahashi, W., Toyoda, M., Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147, 27-41, (2010). https://doi.org/10.1007/s10957-010-9713-2

Yao, Y., Leng, L. Postolache, M., Zheng, X., Mann-type iteration method for solving the split common fixed point problem, J. Nonlinear Convex Anal. 18(5), 875-882, (2017).

Yao, Y., Yao, J. C., Liou, Y. C., Postolache, M., Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms, Carpathian J. Math. 34, 459-466, (2018). https://doi.org/10.37193/CJM.2018.03.23

Yao, Y., Liou, Y. C., Postolache, M., Self-adaptive algorithms for the split problem of the demicontractive operators, Optim. 67, 1309-1319, (2018). https://doi.org/10.1080/02331934.2017.1390747

Zhang, S. S., Lee, H. W., Chan, C. K., Algorithms of common solutions for quasi variational inclusion and fixed point problems, Appl. Math. Mech. 29, 571-581, (2008). https://doi.org/10.1007/s10483-008-0502-y

Zhao, X., Kung, F. N., Li, C., Yao, J. C., Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim. 78, 613-641, (2018). https://doi.org/10.1007/s00245-017-9417-1

Published
2022-02-07
Section
Proceedings