Behavior of the isothermal Elasticity operator with non-linear friction in a thin domain
Abstract
This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.
Downloads
References
C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, John Wiley, Chichester, 1984.
G. Bayada and K. Lhalouani, Asymptotic and numerical analysis for unilateral contact problem with Coulomb's friction between an elastic body and a thin elastic soft layer, Asymptotic Analysis 25 (2001), 329-362.
G. Bayada, M. Boukrouche, On a free boundary problem for Reynolds equation derived from the Stokes system with Tresca boundary conditions, J. Math. Anal. Appl. 382 (2003), 212-231. https://doi.org/10.1016/S0022-247X(03)00140-9
H. Benseridi and M. Dilmi, Some inequalities and asymptotic behaviour of dynamic problem of linear elasticity, Georgian Mathematical Journal 20 (1) (2013), 25-41. https://doi.org/10.1515/gmj-2013-0004
M. Boukrouche and R. El mir, On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions, Nonlinear Analysis: Real World Applications 9 (2008), 674-692. https://doi.org/10.1016/j.nonrwa.2006.12.012
M. Boukrouche and G. Lukaszewicz, On a lubrication problem with Fourier and Tresca boundary conditions, Math. Models Methods Appl. Sci. 14 (6) (2004), 913-941. https://doi.org/10.1142/S0218202504003490
M. Boukrouche and G. Lukaszewicz, Asymptotic analysis of solutions of a thin lm lubrication problem with Coulomb uidsolid interface law. International Journal of Engineering Science , 41(2003), pp.521-537. https://doi.org/10.1016/S0020-7225(02)00282-3
M. Boukrouche and F. Saidi, Non-isothermal lubrication problem with Tresca fluid-solid interface law. Part I, Nonlinear Analysis: Real World Applications 7 (2006), 1145-1166. https://doi.org/10.1016/j.nonrwa.2005.10.008
H. Brezis, Equations et in'equations non lin'eaires dans les espaces vectoriels en dualit'e, Ann. Inst. Fourier 18 (1968), pp. 115-175. https://doi.org/10.5802/aif.280
M. Dilmi, H. Benseridi and A. Saadallah, Asymptotic Analysis of a Bingham Fluid in a Thin Domain with Fourier and Tresca Boundary Conditions, Adv. Appl. Math. Mech., 6 (2014), 797-810. https://doi.org/10.4208/aamm.2013.m350
M. Dilmi, M. Dilmi and H. Benseridi, Study of generalized Stokes operator in a thin domain with friction law (case p <2), Math Meth Appl Sci. 2018;41: 9027-9036. https://doi.org/10.1002/mma.4876
G. Duvaut, J.L. Lions, Les In'equations en M'ecanique des Fluides, Dunod, 1969.
G. Duvaut, Equilibre d' un solide elastique avec contact unilateral et frottement de Coulomb. C. R. Math. Acad. Sci. Paris 290(1980), pp.263265.
G. Duvaut, Loi de frottement non locale, J. Mec. Theor. Appl. (1982), pp. 7378, Numero special.
I. R. Ionescu, Q. L. Nguyen and S. Wolf, Slip-dependent friction in dynamic elasticity, Nonlinear Analysis 53 (2003), 375-390. https://doi.org/10.1016/S0362-546X(02)00302-4
Z. Lerguet, Z. Zellagui, H. Benseridi and S. Drabla, Variational analysis of an electro viscoelastic contact problem with friction, Journal of the Association of Arab Universities for Basic and Applied Sciences, 14 (Issue 1) (2013), 93-100. https://doi.org/10.1016/j.jaubas.2012.10.001
Saadallah A, Benseridi H, Dilmi M and Drabla S. Estimates for the asymptotic convergence of a non-isothermal linear elasticity with friction. Georgian Math J. 2016; 23(3):435-446. https://doi.org/10.1515/gmj-2016-0002
M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2012 https://doi.org/10.1017/CBO9781139104166
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).