Analytical and numerical approach for a nonlinear Volterra-Fredholm integro-differential equation

Abstract

An approach for Volterra- Fredholm integro-differential equations using appropriate fixed point theorems of existence, uniqueness is presented. The approximation of the solution is performed using Nystrom method in conjunction with successive approximations algorithm. Finally, we give a numerical example, in order to verify the effectiveness of the proposed method with respect to the analytical study.

Downloads

Download data is not yet available.

References

S. Alipour, F. Mirzaee, An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: A combined successive approximations method with bilinear spline interpolation, Appl. Math. Comput. 371, 124-947, (2020). https://doi.org/10.1016/j.amc.2019.124947

N. Apreutesei, Some properties of integro-differential equations from biology, AIP Conference Proceedings, 1561, 256, 1561-256, (2013). https://doi.org/10.1063/1.4827236

K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, (1997). https://doi.org/10.1017/CBO9780511626340

P. Darania, S. Pishbin, On the Numerical Solutions for Nonlinear Volterra-Fredholm Integral Equations, Bol. Soc. Paran. Mat. ,(2018). https://doi.org/10.5269/bspm.42815

M. Erfanian, A. Mansoori, Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet, Math. Comput. Simulation. 165, 223-237, (2019). https://doi.org/10.1016/j.matcom.2019.03.006

M. Erfanian, H. Zeidabadi, Finite difference method for solving partial integro-differential equations, Mathematical Researches, 6 (1), 79-88, (2020).

L. Grammant, M. Ahues, F. D. D'Almeida, For nonlinear infinite dimensional equations which to begin with: linearization or discretization, J. Integral Equations Appl. 26, 413-436, (2014). https://doi.org/10.1216/JIE-2014-26-3-413

Y. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics, Lect. Notes Phys, 806, (Springer, Dordrecht), (2010). DOI 10.1007/978-90- 481-3797-8

H. Guebbai, M. Z. Aissaoui, I. Debbar, B. Khalla, Analytical and numerical study for an integro-differential nonlinear Volterra equation. AMC, 229, 367-373, (2014). https://doi.org/10.1016/j.amc.2013.12.046

T. Jangveladze, Z. Kiguradze, B. Neta, Numerical Solutions of Three Classes of Nonlinear Parabolic Integro-Differential Equations, Elsevier, (2016). https://doi.org/10.1016/j.trmi.2016.09.006

L. V. Kantorovich, G. P. Akilov, Functional Analysis, Second edition, PERGAMON PRESS, (1982).

A. Khellaf, W. Merchela, S. Benarab , New numerical process solving nonlinear infinite dimensional equations, Comput. Appl. Math. doi.org/10.1007/s40314-020-1116-x, (2020). https://doi.org/10.1007/s40314-020-1116-x

F. Mirzaee, N. Samadyar, Numerical solution of two dimensional stochastic Volterra-Fredholm integral equations via operational matrix method based on hat functions, SeMA. J, https://doi.org/10.1007/s40324-020-00213-2, (2020). https://doi.org/10.1007/s40324-020-00213-2

F. Mirzaee, N. Samadyar, On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions, Eng. Anal. Bound. Elem. 100, 246-255, (2019). https://doi.org/10.1016/j.enganabound.2018.05.006

R. Precup, Methods in nonlinear integral equations, Springer-Science+Business Media B.V, (2002). https://doi.org/10.1007/978-94-015-9986-3

S. Salah, H. Guebbai, S. Lemita, M. Z. Aissaoui, Solution of an Integro-differential Nonlinear Equation of Volterra Arising of Earthquake Model, Bol. Soc. Paran. Mat. doi:10.5269/bspm.48018, (2019).

S. Touati, M. Z. Aissaoui, S. Lemita, H. Guebbai, Investigation approach for a nonlinear singular Fredholm integrodifferential equation, Bol. Soc. Paran. Mat. doi:10.5269/bspm.46898, (2020).

K. Wang, Q. Wang, K. Guan, Iterative method and convergence analysis for a kind of mixed nonlinear VolterraFredholm integral equation, Appl. Math. Comput. 225, 631-637, (2013). https://doi.org/10.1016/j.amc.2013.09.069

Published
2022-12-21
Section
Articles