The continuous generalized wavelet transform associated with q-Bessel operator
Abstract
The continuous generalized wavelet transform associated with -Bessel operator is defined, which will invariably be called continuous -Bessel wavelet transform . Certain and boundedness results and inversion formula for continuous -Bessel wavelet transform are obtained. Discrete -Bessel wavelet transform is defined and a reconstruction formula is derived for discrete- Bessel wavelet.
Downloads
References
C. K. Chui, An Introduction to Wavelets. Academic Press, New York (1992). https://doi.org/10.1063/1.4823126 DOI: https://doi.org/10.1063/1.4823126
G. Kaiser, A Friendly Guide to Wavelets. Birkhauser (1994).
R. S. Pathak, Fourier - Jacobi wavelet transform. Vijnana Parishad Anushandhan Patrika, 47, 7-15, (2004).
M. M. Dixit, R. Kumar and C.P.Pandey, Generalized wavelet transform associated with Legendre polynomials. International Journal of Computer Applications,108(12),(2014). https://doi.org/10.5120/18966-0308 DOI: https://doi.org/10.5120/18966-0308
R. S. Pathak and C. P.Pandey, Wavelet transform in Generalized Sobolev space. Journal of Indian Mathematical Society,73,235-247,(2006).
R. S. Pathak and C. P.Pandey, Lagurree wavelet transforms. Integral transform and special functions,20, 505-518,(2009). https://doi.org/10.1080/10652460802047809 DOI: https://doi.org/10.1080/10652460802047809
K. Trimeche, Generalized Wavelets and Hypergroups. Gordon and Breach Science Publishers, Amsterdam (1997). https://doi.org/10.1007/978-0-8176-4348-5_12 DOI: https://doi.org/10.1007/978-0-8176-4348-5_12
G. Gasper and M. Rahman, Generalized Wavelets and Hypergroups. Basic hypergeometric series, 2nd edn. Cambridge University Press, (2004). https://doi.org/10.1017/CBO9780511526251 DOI: https://doi.org/10.1017/CBO9780511526251
A. Fitouhi, M. Hamza and F. Bouzeffour, The q − jα Bessel function. J. Approx. Theory,115, 114-116,(2002). https://doi.org/10.1006/jath.2001.3645 DOI: https://doi.org/10.1006/jath.2001.3645
T. H. Koornwinder and R. F. Swarttouw, On q-Analogues of the Fourier and Hankel transforms. Trans. Amer Math. Soc. 333, 445-461,(1992). https://doi.org/10.1090/S0002-9947-1992-1069750-0 DOI: https://doi.org/10.1090/S0002-9947-1992-1069750-0
A. Fitouhi, L. Dhaouadi and J. El Kamel, Inequalities in q-Fourier analysis.J. Inequal. Pure Appl. Math, 171, 1-14(2006).
A. Fitouhi and L. Dhaouadi, Positivity of the generalized translation operator associated to the q-Hankel transform. Constr. Approx,34,453-472 (2011). https://doi.org/10.1007/s00365-011-9132-0 DOI: https://doi.org/10.1007/s00365-011-9132-0
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).