The canonical form of multiplication modules
Abstract
Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \simeq R/I_1 \bigoplus R/I_2 \bigoplus ... \bigoplus R/I_n$ and $I_1 \subseteq I_2 \subseteq ... \subseteq I_n$. In this paper, we use some new results about $\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.Downloads
References
El-Bast, Z. A., Smith, P. F., Multiplication modules. Comm. Algebra 16,755-779, (1988) DOI: https://doi.org/10.1080/00927878808823601
Azizi, A., Shiraz, Weak multiplication modules. Czechoslovak mathematical journal 53(128), 529-534, (2003) DOI: https://doi.org/10.1023/B:CMAJ.0000024500.35257.39
Lang, S., Algebra. 3rd Edition, Addison-Wesley, (1993).
Kaplansky, I., Elementary Divisors and Modules. Tran. Ame. Math. Soc. 66, 153-169, (1949). DOI: https://doi.org/10.1090/S0002-9947-1949-0031470-3
M. E. Charkani, M. E., Akharraz, I., Fitting ideals and cyclic decomposition of finitely generated modules. Arabian Journal for Science and Engineering 25(2), 151-156, (2000).
Cayley, A., On the theory of involution in geometry,Cambridge Math. 11, 52-61, (1847).
Lombardi, H., Quitte,C., Algebre Commutative, Methodes Constructives: Modules Projectifs de Type Fini, Calvage et Mounet, (2016).
Gilmer, R., Heinzer, W., On the Number of Generators of an Invertible Ideal, Journal of Algebra 14, 139-151, (1970). DOI: https://doi.org/10.1016/0021-8693(70)90118-3
Kumar, N. M., On Two Conjectures About Polynomial Rings, Inventiones Math. 46, 225-236, (1978). DOI: https://doi.org/10.1007/BF01390276
Brown, W. C., Matrices over commutative rings. Marcel Decker Inc, New York, 149-175, (1993).
Shores, T., Wiegand, R., Rings whose finitely generated modules are direct sums of cyclics. Journal of Algebra 32, 152-172, (1974). DOI: https://doi.org/10.1016/0021-8693(74)90178-1
Lafond, J. P., Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monog`enes. Journal of Algebra 17, 575 - 591, (1971). DOI: https://doi.org/10.1016/0021-8693(71)90010-X
Barnard, A., Multiplication modules. Journal of Algebra 71, 174-178, (1981). DOI: https://doi.org/10.1016/0021-8693(81)90112-5
Eisenbud, D., Commutative Algebra with a view towards Algebraic Geometry. GTM 150, Springer Verlag, New York (1994).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).