Some results on zeros of a polynomial

Some results on zeros of a polynomial

  • Subhasis Das Kurseong College

Resumen

For a given polynomial
$p\left( z\right) =a_{0}+a_{1}z+\cdots +a_{n}z^{n}$
with real or complex coefficients, Gulzar $\left( 2015\right) $ proved
for any real $p>1,q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, all the
zeros of $p\left( z\right) $ lie in the closed circular region%
\begin{equation*}
\left\vert z\right\vert \leq \max \left\{ L_{p},L_{p}^{\frac{1}{n+1}%
}\right\},
\end{equation*}%
where%
\begin{equation*}
L_{p}=\left( n+1\right) ^{\frac{1}{q}}\left( \sum\limits_{j=1}^{n}\left\vert
\frac{a_{n-1}a_{n-j}-a_{n}a_{n-j-1}}{a_{n}^{2}}\right\vert ^{p}\right) ^{%
\frac{1}{p}},\text{ }a_{-1}=0.
\end{equation*}%
Recently, Gulzar also generalized the above result by using a lacunary type polynomial.
Unfortunately, the proof is not correct. In this present paper an attempt has been taken to investigate
and extend the above results were made. Moreover, we have produce some important
corollaries which give the generalization of Mezerji and Bidkham $\left( 2014\right)$ results.

Descargas

La descarga de datos todavía no está disponible.

Citas

\bibitem{Cauchy} Cauchy, A. L.,
{\em Exercise de Mathematiques}, Iv Annee de Bure Freres, Paris, (1829).

\bibitem{Mezbid} Mezerji, H. A. S., Bidkham, M.,
{\em Cauchy type results concerning location of zeros of
polynomials}, Acta Math. Univ. Comenianae. LXXXIII (2), 267-279, (2014).

\bibitem{Marden} Marden, M.,
{\em Geometry of polynomials}, Amer. Math. Soc. Math. Surveys 3, Amer. Math.
Soc. Providence R.I., (1966).

\bibitem{Gulzar} Gulzar, M. H.,
{\em Bounds for polynomial zeros}, Int. J.
Adv. Found. Res. Sci. Tech. 1 (12), 20-25, (2015).

\bibitem{Gulzam} Gulzar, M. H.,
{\em Bounds for the zeros of a polynomial}, Int. J. Recent Scientific
Research 8 (3), 15873-15875, (2017).

\bibitem{Mohamq1} Mohammad, Q. G.,
{\em On the zeros of polynomials}, Amer. Math. Monthly 69 (9), 901-904, (1962).

\bibitem{Mohamq} Mohammad, Q. G.,
{\em Location of the zeros of polynomials}, Amer. Math. Monthly 74 (3), 290-292, (1967).

\bibitem{Rahsch} Rahman, Q. I., Schmeisser, G.,
{\em Analytic Theory of Polynomials}, Oxford University Press Inc, New York, (2002).
Publicado
2025-12-05
Sección
Research Articles