Results on various derivations and Posner’s theorem in prime ideals of rings
Abstract
Let R be a ring and P be a prime ideal of R: In this work, we study the structure of the quotient ring R=P in a new and more general way by discussing various algebraic identities on appropriate subsets of R involving multiplicative (generalized)-(α; β)-derivations, multiplicative generalized (α; β)-derivations, multiplicative generalized derivations and generalized derivations. In addition, we give examples exhibiting the cruciality of the hypothesis of our results.
Downloads
References
F. A. A. Ahmahdi, A. Mamouni, M. Tamekkante, A generalization of Posner's theorem on derivations in rings, Indian J. Pure Appl. Math., 51(1) (2020), 187-194. https://doi.org/10.1007/s13226-020-0394-8
F. Ali, M. A. Chaudhry, On generalized (α, β)-derivations of semiprime rings, Turk J. Math., 35 (2011), 399-404. https://doi.org/10.3906/mat-0906-60
A. Ali, M. Yasen, M. Anwar, Strong commutativity preserving mappings on semiprime rings, Bull. Korean Math. Soc., 43(4) (2006), 711-713. https://doi.org/10.4134/BKMS.2006.43.4.711
H. E. Bell, G. Mason, On derivations in near rings and rings, Math. J. Okayama Univ., 34 (1992), 135-144.
H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull., 37(4) (1994), 443-447. https://doi.org/10.4153/CMB-1994-064-x
H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30(1) (1987), 92-101. https://doi.org/10.4153/CMB-1987-014-x
H. E. Bell, A. Boua, L. Oukhtite, Semigroup ideals and commutativity in 3-prime near-rings, Commun. Algebra, 43(5) (2015), 1757-1770. https://doi.org/10.1080/00927872.2013.879161
H. E. Bell, Some commutativity results involving derivations, Trends in Theory of Rings and Modules, S. T. Rizvi and S. M. A. Zaidi (Eds.), Anamaya publisher, New Delhi, India (2005).
M. Bresar, Semiderivations of prime rings, Proc. Amer. Math. Soc., 108(4) (1990), 859-860. https://doi.org/10.1090/S0002-9939-1990-1007488-X
M. Bresar, C. R. Miers, Strong commutativity preserving mappings of semiprime rings, Canad. Math. Bull., 3(7) (1994), 457-460. https://doi.org/10.4153/CMB-1994-066-4
M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Am. Math. Soc., 335(2) (1993), 525-546. https://doi.org/10.1090/S0002-9947-1993-1069746-X
Q. Deng, M. Ashraf, On strong commutativity preserving mappings, Results Math., 30 (1996), 259-263. https://doi.org/10.1007/BF03322194
I. N. Herstein, A note on derivations, Canad. Math. Bull., 21 (1978), 369-370. https://doi.org/10.4153/CMB-1978-065-x
B. Hvala, Generalized derivations in rings, Commun. Algebra, 26(4) (1998), 1147-1166. https://doi.org/10.1080/00927879808826190
E. Koc, O. Golbasi, Some results on ideals of semiprime rings with ¨ multiplicative generalized derivations, Commun. algebra, 46 (11) (2018), 4905-4913. https://doi.org/10.1080/00927872.2018.1459644
T. K. Lee, T. L. Wong, Nonadditive strong commutativity preserving maps, Commun. Algebra, 40 (2012), 2213-2218. https://doi.org/10.1080/00927872.2011.578287
J. S. Lin, C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl., 428 (2008), 1601-1609. https://doi.org/10.1016/j.laa.2007.10.006
J. S. Lin, C. K. Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl., 432 (2010), 14-23. https://doi.org/10.1016/j.laa.2009.06.036
C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math., 166 (2012), 453-465. https://doi.org/10.1007/s00605-010-0281-1
C. K. Liu, P. K. Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra, 59 (2011), 905-915. https://doi.org/10.1080/03081087.2010.535819
J. Ma, X.W. Xu, F. W. Niu, Strong commutativity preserving generalized derivations on semiprime rings, Acta Math. Sin. (Engl. Ser.), 24 (2008), 1835-1842. https://doi.org/10.1007/s10114-008-7445-0
J. Ma, X. W. Xu, Strong commutativity-preserving generalized derivations on semiprime rings, Acta Math. Sinica, 24(11) (2008), 1835-1842. doi: 10.1007/s10114-008-7445-0 (English Series). https://doi.org/10.1007/s10114-008-7445-0
A. Mamouni, L. Oukhtite, Z. Mohammed, Prime ideals and generalized derivations with central values on rings, Rendiconti del Circolo Matematico di Palermo Series 2, (to appear), https://doi.org/10.1007/s12215-020-00578-3
A. Mamouni, L. Oukhtite, Z. Mohammed, On derivations involving prime ideals and commutativity in rings, S˜ao Paulo Journal of Mathematical Sciences, (to appear), https://doi.org/10.1007/s40863-020-00187-z
H. Marubayashi, M. Ashraf, N. Rehman, S. Ali, On generalized (α, β)-derivations in prime rings, Algebra Colloq., 17(Spec 1) (2010), 865--874. https://doi.org/10.1142/S1005386710000805
E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
N. Rehman, R. M. Al-Omary, N. M. Muthana, A note on multiplicative (generalized) (α, β)-derivations in prime rings, Annales Math. Sil., 33 (2019), 266-275. https://doi.org/10.2478/amsil-2019-0008
M. S. Samman, On strong commutativity-preserving maps, Int. J. Math. Math. Sci., 6 (2005), 917-923. https://doi.org/10.1155/IJMMS.2005.917
M. S. Samman, A. B. Thaheem, Derivations on semiprime rings, Int. J. Pure Appl. Math., 5(4) (2003), 465-472.
P. Semrl, Commutativity preserving maps, Linear Algebra Appl., 429 (2008), 1051-1070. https://doi.org/10.1016/j.laa.2007.05.006
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).