Gevrey class regularity and stability for the Debye-Huckel system in critical Fourier-Besov-Morrey spaces
Abstract
In this paper, we study the analyticity of mild solutions to the Debye-Huckel system with small initial data in critical Fourier-Besov-Morrey spaces. Specifically, by using the Fourier localization argument, the Littlewood-Paley theory and bilinear-type fixed point theory, we prove that global-in-time mild solutions are Gevrey regular. As a consequence of analyticity, we get time decay of mild solutions in Fourier-BesovMorrey spaces. Finally, we show a blow-up criterion of the local-in-time mild solutions of the Debye-Huckel system.
Downloads
References
Aurazo-Alvarez, L. L., Ferreira, L.C.F.: Global well-posedness for the fractional Boussinesq-Coriolis system with stratification in a framework of Fourier-Besov type. SN Partial Differential Equations and Applications 2, pp.18 (2021) https://doi.org/10.1007/s42985-021-00109-4
Azanzal, A., Allalou, C., A., Abbassi,: Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces. J. Nonlinear Funct. Anal. 2021 (2021), Article ID 24.
Azanzal, A., Abbassi, A., Allalou, C., Existence of Solutions for the Debye-H¨uckel System with Low Regularity Initial Data in Critical Fourier-Besov-Morrey Spaces. Nonlinear Dynamics and Systems Theory, 21, 367-380 (2021).
Azanzal, A., Abbassi, A., Allalou, C.: On the Cauchy problem for the fractional drift-diffusion system in critical Fourier-Besov-Morrey spaces. International Journal On Optimization and Applications, 1, pp.28 (2021).
Azanzal, A., Allalou, C., Melliani, S.: Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces. J Elliptic Parabol Equ (2021). https://doi.org/10.1007/s41808-021-00140-x
Bae, H.: Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations. Proceedings of the American Mathematical Society, 2887-2892 (2015). https://doi.org/10.1090/S0002-9939-2015-12266-6
Bahouri, H., Chemin, J. Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Springer Science and Business Media. 343 (2011). https://doi.org/10.1007/978-3-642-16830-7
Bahouri, H.: The Littlewood-Paley theory: a common thread of many words in nonlinear analysis. European Mathematical Society Newsletter (2019). https://doi.org/10.4171/NEWS/112/4
Benameur, J.: Long time decay to the Lei-Lin solution of 3D Navier-Stokes equations. Journal of Mathematical Analysis and Applications. 422 , 424-434 (2015). https://doi.org/10.1016/j.jmaa.2014.08.039
Benameur, J., Benhamed, M.: Global existence of the two-dimensional QGE with sub-critical dissipation. Journal of Mathematical Analysis and Applications. 423, 1330-1347 (2015). https://doi.org/10.1016/j.jmaa.2014.10.066
Benhamed, M., Abusalim, S. M.: Long Time Behavior of the Solution of the Two-Dimensional Dissipative QGE in Lei-Lin Spaces. International Journal of Mathematics and Mathematical Sciences. 2020, 1-6 (2020). https://doi.org/10.1155/2020/6409609
Biler, Piotr.: Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions. Nonlinear Analysis: Theory, Methods and Applications. 19, 1121-1136 (1992). https://doi.org/10.1016/0362-546X(92)90186-I
Biswas, A.: Gevrey regularity for a class of dissipative equations with applications to decay. Journal of Differential Equations. 253, 2739-2764 (2012). https://doi.org/10.1016/j.jde.2012.08.003
Cannone, M., Wu, G.: Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces. Nonlinear Anal, 75 (2012). https://doi.org/10.1016/j.na.2012.01.029
Chae, D.: On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences. 55, 654-678 (2002). https://doi.org/10.1002/cpa.10029
Chen, X.: Well-Posedness of the Keller-Segel System in Fourier-Besov-Morrey Spaces. Zeitschrift f¨ur Analysis und ihre Anwendungen. 37, 417-434 (2018). https://doi.org/10.4171/ZAA/1621
Cui, Y., Xiao, W.: Gevrey regularity and time decay of the fractional Debey-Huckel system in Fourrier-Besov spaces. Bulletin of the Korean Mathematical Society. 57, 1393-1408 (2020).
de Almeida, M. F., Ferreira, L. C. F., Lima, L. S. M.: Uniform global well-posedness of the Navier-Stokes-Coriolis system in a new critical space. Mathematische Zeitschrift. 287, 735-750 (2017). https://doi.org/10.1007/s00209-017-1843-x
Duvaut, G., Lions, J. L.: In'equations en thermo'elasticite et magnetohydrodynamique. Archive for Rational Mechanics and Analysis. 46, 241-279 (1972). https://doi.org/10.1007/BF00250512
Ferreira, L. C. F., Lidiane S. M. L: Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces. Monatshefte fur Mathematik, 175, 491-509 (2014). https://doi.org/10.1007/s00605-014-0659-6
Ferreira, L. C.: On the uniqueness of mild solutions for the parabolic-elliptic Keller-Segel system in the critical Lp-space. Mathematics in Engineering. 4, 1-14 (2022). https://doi.org/10.3934/mine.2022048
Ferreira, L. C., Precioso, J. C.: Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data. Nonlinearity. 24, 1433 (2011). https://doi.org/10.1088/0951-7715/24/5/003
Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier-Stokes equations. Journal of Functional Analysis. 87, 359-369 (1989). https://doi.org/10.1016/0022-1236(89)90015-3
Gruji'c, Z., Kukavica, I.: Space analyticity for the Navier-Stokes and related equations with initial data inLp. journal of functional analysis. 152, 447-466 (1998). https://doi.org/10.1006/jfan.1997.3167
Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal. 267, 1321-1337 (2014). https://doi.org/10.1016/j.jfa.2014.05.022
Iwabuchi, T.: Global well-posedness for Keller-Segel system in Besov type spaces. Journal of Mathematical Analysis and Applications. 379, 930-948 (2011). https://doi.org/10.1016/j.jmaa.2011.02.010
Iwabuchi, T., and Makoto N.: Small solutions for nonlinear heat equations, the Navier-Stokes equation and the KellerSegel system in Besov and Triebel-Lizorkin spaces. Advances in Differential Equations. 18, 687-736 (2013). https://doi.org/10.57262/ade/1369057711
Karch, G.: Scaling in nonlinear parabolic equations. Journal of mathematical analysis and applications. 234, 534-558 (1999). https://doi.org/10.1006/jmaa.1999.6370
Kato, T.: Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions. Math. Z. 187, 471-480 (1984). https://doi.org/10.1007/BF01174182
Kato, T.: Strong solutions of the Navier-Stokes equation in Morrey spaces. Boletim da Sociedade Brasileira de Matem'etica-Bulletin/Brazilian Mathematical Society. 22, 127-155 (1992). https://doi.org/10.1007/BF01232939
Koch, H., Tataru, D.: Well-posedness for the Navier-Stokes equations, Adv. Math. 157, 22-35 (2001). https://doi.org/10.1006/aima.2000.1937
Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differential Equations. 19, 959-1014 (1994). https://doi.org/10.1080/03605309408821042
Kurokiba, M., Ogawa, T.: Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation. Journal of Mathematical Analysis and Applications. 342, 1052-1067 (2008). https://doi.org/10.1016/j.jmaa.2007.11.017
Lemari'e-Rieusset, P. G.: Recent developments in the Navier-Stokes problem. CRC Press, (2002). https://doi.org/10.1201/9780367801656
Liu, Q., Zhao, J., Cui, S.: Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces. Annali di Matematica Pura ed Applicata. 191, 293-309 (2012). https://doi.org/10.1007/s10231-010-0184-8
Luo, Y.: Well-Posedness Of A Cauchy Problem Involving Nonlinear Fractal Dissipative Equations. Applied Mathematics E-Notes. 10, 112-118 (2010).
Miao, C., Yuan, B., Zhang, B.: Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Analysis: Theory, Methods and Applications. 68 (2008), 461-484. https://doi.org/10.1016/j.na.2006.11.011
Wang, W., Wu, G.: Global mild solution of the generalized Navier-Stokes equations with the Coriolis force. Applied Mathematics Letters. 76, 181-186 (2018) https://doi.org/10.1016/j.aml.2017.09.001
Yamamoto, M.: Spatial analyticity of solutions to the drift-diffusion equation with generalized dissipation. Arch. Math. 97, 261-270 (2011). https://doi.org/10.1007/s00013-011-0302-x
Yamazaki, M.: The Navier-Stokes equations in the weak-Ln space with time-dependent external force. Math. Ann. 317, 635-675 (2000). https://doi.org/10.1007/PL00004418
Zhao, J.: Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces. Annali di Matematica. 197, 521-548 (2018). https://doi.org/10.1007/s10231-017-0691-y
Zhao, J.: Gevrey regularity of mild solutions to the parabolic-elliptic system of drift-diffusion type in critical Besov spaces. Journal of Mathematical Analysis and Applications, 448, 1265-1280 (2017). https://doi.org/10.1016/j.jmaa.2016.11.050
Zhao, J., Liu, Q., Cui, S.: Existence of solutions for the Debye-H¨uckel system with low regularity initial data. Acta applicandae mathematicae. 125, 1-10 (2013). https://doi.org/10.1007/s10440-012-9777-0
Zhou, X., Xiao, W.: Algebra Properties in Fourier-Besov Spaces and Their Applications. Journal of Function Spaces, 2018, (2018). https://doi.org/10.1155/2018/3629179
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).