A mathematical model and optimal control analysis for scholar Drop out
Abstract
In this paper, we proposed and analyzed a non-linear mathematical model for scholar Drop out and we advanced an optimal control policy for this model by considering three variables namely the numbers of school-age children who are in school, school-age children who are out of school, and school-age children in non-formal education. The model is examined using the stability theory of differential equations. The optimal control analysis for the proposed scholar Drop out model is performed using Pontryagin's maximum principle. The conditions for optimal control of the problem with effective use of implemented policies to counter this scourge are derived and analyzed.
Downloads
References
Territorial atlas of early school leaving Higher Council of Education, Training and Scientific Research Morocco, https://www.csefrs.ma/publications/latlas-territorial-de-labandon-scolaire/?lang=fr.
Surekha B. Munoli and Shankrevva Gani . Optimal control analysis of a mathematical model for unemployment. Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/oca.2195. DOI: https://doi.org/10.1002/oca.2195
Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF. The Mathematical Theory of Optimal Processes.Wiley: New York, 1962.
Okosun KO, Makinde OD, Takaidza I. Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Applied Mathematical Modelling 2013; 37:3802-3820. DOI: https://doi.org/10.1016/j.apm.2012.08.004
Tchenche JM, Khamis SA, Agusto FB. Optimal control and sensitivity analysis of an influenza model with treatment and vaccination. Acta Biotheor 2011; 59:1-28. DOI: https://doi.org/10.1007/s10441-010-9095-8
Fleming WH, Rishel RW. Deterministic and Stochastic Optimal Control. Springer: Verlag, New York, 1975. DOI: https://doi.org/10.1007/978-1-4612-6380-7
Makinde OD, Okosun KO. Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. Biosystems 2011; 104(1):32-41. DOI: https://doi.org/10.1016/j.biosystems.2010.12.010
Joshi HR. Optimal control of an HIV immunology model. Optimal Control Applications and Methods 2002; 23: 199-213. DOI: https://doi.org/10.1002/oca.710
https://www.men.gov.ma/ar/Pages/statistiques.aspx, http://rgphentableaux.hcp.ma/.
A. El-Alami Laaroussi, M. Rachik, M. Elhia, An optimal control problem for a spatiotemporal SIR model, Int. J. Dynam. Control. 6 (2018), 384-397. DOI: https://doi.org/10.1007/s40435-016-0283-5
A. Kourrad, A. Alabkari, A. Labriji, et al. Optimal control strategy with delay in state and control variables of transmission of COVID-19 pandemic virus, Commun. Math. Biol. Neurosci., 2020 (2020), 95.
A. Alabkari, A. Kourrad, K. Adnaoui, et al. Control of a reaction-diffusion system: application on a SEIR epidemic mode, J. Math. Comput. Sci. 11 (2021), 1601-1628.
K.Adnaoui, Adil El Alami Laaroussi, An optimal control for a two-dimensional spatiotemporal SEIR epidemic model, International Journal of Differential Equations, Volume 2020, Article ID 4749365, 15 pages. DOI: https://doi.org/10.1155/2020/4749365
K. Adnaoui, I. Elberrai, A. E. A. Laaroussi, K. & Hattaf, (2022). A spatiotemporal sir epidemic model two-dimensional with problem of optimal control. Bol. Soc. Paran. Mat. DOI: https://doi.org/10.5269/bspm.51110
A.Kourrad, A. Alabkari, K. Adnaoui, O. Zakary, Y. Tabit, A. E. A. Laaroussi & F. Lahmidi. A spatiotemporal model with optimal control for the novel coronavirus epidemic in Wuhan, China. Commun. Math. Biol. Neurosci., 2021, vol. 2021, p. Article ID 45.
A. Alabkari, K. Adnaoui, A. Kourrad & A. Bennar. (2021). Optimal control of a community violence model: community violence treated as a contagious disease. Commun. Math. Biol. Neurosci., 2021, Article-ID.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).