Multiplicity of solutions for a nonlinear nonlocal problem with variable exponent

  • Abdelhak Bousgheiri University Mohammed first
  • Anass Ourraoui University Mohammed first

Abstract

This work deals with a class of value problem involving the $p(x)$-biharmonic elliptic equation \begin{equation*} \begin{gathered} M_1(\int_{\Omega}\frac{1}{p(x)}|\Delta u|^{p(x)}dx)\Delta^2_{p(x)}u-M_2(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx)\Delta_{p(x)}u=\lambda f(x,u)+\mu g(x,u) \quad\text{in }\Omega,\\ u=\Delta u=0,\quad x\in \partial \Omega, \end{gathered} \end{equation*} where $\Omega$ is a bounded domain in $\mathbb{R}^N,~N\geq1.$ with smooth boundary $\partial \Omega.$ Our technical method is based on a theorem obtained by B. Ricceri.

Downloads

Download data is not yet available.

Author Biography

Anass Ourraoui, University Mohammed first

Faculté des Sciences

References

M. Allaoui, A. Elamrouss, A. Ourraoui, Three Solutions For A Quasi-Linear Elliptic Problem, Applied Mathematics E-Notes, 13(2013), 51-59.

A. Ayoujil, A. El Amrouss, Multiple solutions for a Robin problem involving the p(x)−biharmonic operator, Annals of the University of Craiova, Mathematics, Volume 44(1), 2017, 87-93.

N. T. Chung, H. Q. Toan, Multiple solutions for a p(x)−Kirchhoff type problem with Neumann boundary condition, An.S¸tiint¸. Univ. Al. I. Cuza Ia¸si Mat. (N.S.) Tomul LXII, 2016, f.2.

J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries Vol 1. Elliptic Equations, In: Pitman Res. Notes Ser 106, Boston, MA, Pitman, 1985.

A. R. El Amrouss, F. Moradi and M. Moussaoui, Existence of solutionss for fourth order PDES with variable exponent, Electronic journal of differential equations, 13(153)(2009).

A. R. El Amrouss and A. Ourraoui, Existence of solutions for a boundary problem involving p(x)−biharmonic operator, Bol. Soc. Paran. Mat.(3s.), 1(31)(2013), 179-192.

X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52(2003), 1843-1852.

X. L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W m;p(x)(Ω) J. Math. Anal. Appl., 263(2001), 424-446.

S. Heidarkhani, L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math Nachrichten. 2017,00:1-17.

C. Li and C. L. Tang, Three solutions for a Navier boundary value problem in volving the p-biharmonic, Nonlinear Anal. 72(2010), 1339-1347.

J. Liu and X. Shi, Existence of three solutions for a class of quasi-linear elliptic systems involving the (p(x); q(x))-Laplacian, Nonlinear Anal., 71(2009), 550-557.

L. K. Martinson and K. B. Pavlov, Unsteady shear flows of a conducting ´auid with a rheological power flow, Magnit Gidrodinamika, (1970), 5869-5875.

J. Musielak, Orlicz Spaces and Modular Spaces, in Lecture Notes in Mathematics, Springer, Berlin, Vol. 1043, 1983.

A. Ourraoui, On a class of a boundary value problems involving the p(x)−Biharmonic operator, Proyecciones, 2019, 38(5), pp.955-967.

B. Ricceri, A three critical points theorem revisited, Nonlinear Anal., 70(2009), 3084-3089.

B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comp. Model., 32(2000), 1485-1494.

N. Tsouli, O. Chakrone, M. Rahmani and O. Darhouche, Strict monotonicity and unique continuation of the biharmonic operator, Bol. Soc. Paran. Mat, (3s.) v. 30 2 (2012): 79-83.

F. Wang, Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value. Probl., 2012, 6 (2012).

E. Zeidler; Nonlinear Function Analysis and its Applications, vol. II/B: NonlinearMonotone Operators, Springer, New york, 1990.

Published
2024-04-29
Section
Articles