An An embedding theorem and spectral equality for semigroups involving demicompactness classes
Abstract
Let $(S(t))_{t\geq0}$ and $(T(t))_{t\geq0}$ denote the strongly continuous semigroups of operators in a Banach space $X$. In this paper, we give a sufficient condition guaranteeing that $(S(t))_{t\geq0}$ can be embedded in a $C_{0}$-group on $X$. Moreover, we characterize the demicompactness of $I-(S(t)-T(t))$ for $t>0$. Our theoretical results will be illustrated by investigating the spectral equality for uniformly continuous semigroups for an upper semi-Fredholm spectrum.
Downloads
References
Benkhaled H., Elleuch A., Jeribi A.: \emph{Demicompactness Results for Strongly Continuous Semigroups, Generators and Resolvents}. Mediterr. J. Math., \textbf{15}(2), (2018)
\bibitem{B.E.J.2}
Benkhaled H., Elleuch A., Jeribi A.: \emph{Demicompactness Properties for Uniformly Continuous Cosine Families}. To appear in Mediterr. J. Math., (2022)
\bibitem{E.N}
Engel K. J., Nagel R.: \emph{One-parameter Semigroups for Linear Evolution Equations}. pringer-Verlag, (2000)
\bibitem{H.P}
Hille E., Phillips R. S.: \emph{Functional Analysis and Semi-Groups}. American Mathematical Society Colloquium Publications, American Mathematical Society, Rhode Island, \textbf{31}, (1957)
\bibitem{J}
Jeribi A.: \emph{Spectral theory and applications of linear operators and block operator matrices}, Springer-Verlag, New-York, (2015)
\bibitem{J1}
Jeribi A., Krichen B., Salhi M.: \emph{Characterization of Relatively Demicompact Operators by Means of Measures of Noncompactness}. J. Korean Math. Soc., \textbf{55}, 877-895 (2018)
\bibitem{K.K.1}
Kuratowski K.: \emph{Sur les espaces complets}. Fund. Math., \textbf{15}, 301-309 (1930)
\bibitem{K.K.2}
Kuratowski K.: \emph{Topology}. Hafner, New York, (1966)
\bibitem{L}
Latrach K., Dehici A.: \emph{Remarks on embeddable semigroups in groups and a generalization of some Cuthbert's results}. Int. J. Math. Math. Sci., \textbf{22}, 1421-1431 (2003)
\bibitem{A.P}
Pazy A.: \emph{Semigroups of linear operators and applications to partial differential equations}. Applied Mathematical Sciences, Springer-Verlag, New York, \textbf{44}, (1983)
\bibitem{P}
Petryshyn W. V.: \emph{Construction of fixed points of demicompact mappings in Hilbert space}. J. Math. Anal. Appl., \textbf{14},
276-284 (1966)
\bibitem{W}
Williams V.: \emph{Closed Fredholm and Semi-Fredholm Operators, Essential Spectra and Perturbations}. J. Functional Anal., \textbf{20}, 1-25 (1975)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



