A note on Kirchhoff type boundary value problem involving Riemann-Liouville fractional derivative

  • Maryam Ahmed Alyami University of Jeddah
  • Hawatin Mohammed Alhirabi University of Jeddah
  • Abdeljabbar Ghanmi Université de Tunis

Abstract

In this paper, we study some nonlinear Kirchhoff boundary value problems of fractional differential equations involving Riemann Liouville operator. Under appropriate assumptions on the functions in the given problem, we establish the existence of solutions using variational methods combined with the mountain pass theorem. Moreover, an illustrative example is presented to prove the validity of the main result.

Downloads

Download data is not yet available.

Author Biographies

Maryam Ahmed Alyami, University of Jeddah

Department of Mathematics

Hawatin Mohammed Alhirabi, University of Jeddah

Department of Mathematics

Abdeljabbar Ghanmi, Université de Tunis

Faculté des Sciences de Tunis

References

R. Agarwal, M. Benchohra, S. Hamani; A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033.

R. Agarwal, M.Benchohra and Djamila Seba; On the Application of Measure of Noncompactness to the Existence of Solutions for Fractional Differential Equations, Result Math. 55 (2009), 221-230.

R. Agarwal, M. Belmekki, M. Benchohra; A survey on semilinear differential equations and inclusions involving RiemannLiouville fractional derivative, Adv. Difference Equ.2009, 981728 (2009).

R. Agarwal, J. dos Santos, C. Cuevas; Analytic resolvent operator and existence results for fractional integro-differential equations, J. Abs. Diff. Equ. 2(2012) 26-47.

O. Agrawal; Analytical schemes for a new class of fractional differential equations, J. Phys. A: Mathematical and Theoretical 40(2007), 5469-5477.

A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal., 44(1973), 349-381.

V. Anh and R. Mcvinish; Fractional differential equations driven by Levy noise, J. Appl. Math. and Stoch. Anal. 16(2003), 97-119.

Z. Bai and H. Lü; Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311(2005) 495-505.

D. Baleanu, J. Trujillo; On exact solutions of a class of fractional Euler-Lagrange equations, Nonlinear Dyn. 52(2008) 331-335.

K. Ben Ali, A. Ghanmi, K. Kefi; Existence of solutions for fractional differential equations with dirichlet boundary conditions, Electr. J. Differ. Equ. 2016, 2016, 1–11.

M. Benchohra, J. Henderson, S. Ntouyas, A. Ouahab; Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338(2008) 1340-1350.

T. Chen, W. Liu; Ground state solutions of Kirchhoff-type fractional Dirichlet problem with p-Laplacian, Adv. Differ. Equ. 2018, 2018, 436.

P. Drabek, S. I. Pohozaev; Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 703-726.

V. Ervin, J. Roop; Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Part. Diff. Eqs. 22(2006) 58-76.

J. Feng, Z. Yong; Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62(2011) 1181-1199.

A. Ghanmi, S. Horrigue; Existence Results for Nonlinear Boundary Value Problems, FILOMAT, 32(2018), 609-618.

A. Ghanmi, Z. Zhang; Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian, Bull. Korean Math. Soc. 56(5) (2019), 1297-1314.

A. Ghanmi, M. Kratou, K. Saoudi; A Multiplicity Results for a Singular Problem Involving a Riemann–Liouville Fractional Derivative, FILOMAT 32(2018), 653–669.

R. Hilfer; Applications of fractional calculus in physics, World Scientific, Singapore, 2000.

W. Jang; The existence of solutions for boundary value problems of fractional differential equatios at resonance, Nonlinear Anal. 74(2011), 1987-1994.

F. Jiao and Y. Zhou; Existence results for fractional boundary value problem via critical point theory, Intern. J. Bif. and Chaos 22(2012), 1-17.

A. A. Kilbas, H.M. Srivastava, J. J. Trujillo; Theory and Applications of Fractional Differential Equations, NorthHolland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.

M. Klimek; Existence and uniqueness result for a certain equation of motion in fractional mechanics, Bull. Polish Acad. Sci. Tech. Sci. 58(2010), 573-581.

V. Lakshmikantham; Theory of fractional functional differential equations, Nonl. Anal. 69(2008) 3337-3343.

V. Lakshmikantham, A. Vatsala; Basic theory of fractional differential equations, Nonl. Anal. 69(2008) 2677-2682.

L. Bourdin; Existence of a weak solution for fractional Euler–Lagrange equations, J. Math. Anal. Appl. 399 (2013) 239–251.

J. Mawhin, M. Willen; Critical point theory and Hamiltonian systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989.

R. Metsler, J. Klafter; The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A. 37(2004), 161-208.

K. Miller, B. Ross; An introduction to the fractional calculus and fractional differential equations, Wiley and Sons, New York, 1993.

I. Podlubny; Fractional differential equations, Academic Press, New York, 1999.

P. Rabinowitz, K. Tanaka: Some result on connecting orbits for a class of Hamiltonian systems, Math. Z. 206(1991), 473-499.

P. Rabinowitz; Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., 65, 1986.

K. Saoudi, A. Ghanmi, S. Horrigue; Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity, J. Pseudo-Differ. Oper. Appl. 11(2020), 1743–1756.

K. Saoudi, P. Agarwal, P. Kumam, A. Ghanmi, P. Thounthong; The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative, Adv. Difference Equ. 2018 (2018): 263.

C. Torres; Mountain pass solution for a fractional boundary value problem, J. Fract. cal. app., 5(1) ( 2014), 1-10.

J. Sabatier, O. Agrawal and J. Tenreiro Machado; Advances in fractional calculus. Theoretical developments and applications in physics and engineering, Springer-Verlag, Berlin, 2007.

S. Samko, A. Kilbas, O. Marichev; Fractional integrals and derivatives: Theory and applications, Gordon and Breach, New York, 1993.

B. West, M. Bologna, P. Grigolini; Physics of fractal operators, Springer-Verlag, Berlin, 2003.

S. Zhang: Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl. 61(2011), 1202-1208.

Published
2024-05-02
Section
Articles