On the existence of almost automorphic generalized solutions to some generalized differential equations

Abstract

This paper is devoted to study some regularity of almost automorphic and asymptotic almost automorphic generalized solution of the differential equation d dtu(t) = Au(t) + f(t), in the framework of the Colombeau algebras. Under certain assumptions about the second member we showed that the generalized solution is an asmptotically almost automorphic in the sense of genaralized functions.

Downloads

Download data is not yet available.

References

Biagioni, H., Oberguggenberger, M.: Generalized solutions to the Korteweg-de Vries and the regularized long-wave equations, SIAM J. Math. Anal. 23, 923-940 (1992). https://doi.org/10.1137/0523049

Bochner, S.: Uniform convergence of monotone sequences of functions. Proc. Natl. Acad. Sci. USA, Vol. 47, p. 582-585, (1961). https://doi.org/10.1073/pnas.47.4.582

Bouzar, C., Khalladi, M. T., Tchouar, F. Z., Almost automorphic generalized functions. Novi Sad J. Math., Vol. 45, No. 1, p. 207-214, (2015). https://doi.org/10.30755/NSJOM.GF14.01

Colombeau, J. F.: Elementary Introduction to New Generalized Function, North Holland, Amsterdam / New

Colombeau, J. F: New Generalized Function and Multiplication of Distribution, North Holland, Amsterdam / New York / Oxford, (1984).

T. Diagana. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer International Publishing. Springer, Berlin, 2013. https://doi.org/10.1007/978-3-319-00849-3

Grosser,M., Kunzinger, M., Oberguggenberger M., Steinbauer,R.: Geometric Theory of Generalized Functions with Applications to General Relativity, Mathematics and its Applications 537, Kluwer ad. Publ., Dordrecht, (2001). https://doi.org/10.1007/978-94-015-9845-3

Hormann,G., Oberguggenberger, M.: Elliptic regularity and solvability for partial differential equations with Colombeau coefficients, Electron. J. Diff. Eqns. 14 1-30 (2004).

Nedeljkov, M., Pilipovic, S. Rajter, D. : Heat equation with singular potential and singular initial data, proc. Edingburg Roy.Soc., to apear, (2005). https://doi.org/10.1017/S0308210500004169

G. M. N'Guerekata. Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Springer Science+Business Media. Springer, New York, 2001. https://doi.org/10.1007/978-1-4757-4482-8

Schwartz, L. : Sur l'impossibilit'e de la multiplication des distributions, C. R. Acad. Sci. Paris 239 847-848. MR 16:265e (1954).

Y. Yi and W. Shen. Almost Automorphic and Almost Periodic Dynamics in Skew-product Semiflows, volume 647 of Memoirs of the American Mathematical Society. Amer. Math. Soc., 1998.

Zaki, M.: Almost automorphic integrals of almost automorphic functions. Canad. Math. Bull., Vol. 15, p. 433-436, (1972). https://doi.org/10.4153/CMB-1972-078-5

Zaki, M.: Almost automorphic solutions of certain abstract differential equations. Annali. di Mat. Pura ed Appl. Ser. Vol. 101, p. 91-114, (1974). https://doi.org/10.1007/BF02417100

Published
2022-12-27
Section
Articles