CERTAIN EXTENDED TYPE HYPERGEOMETRIC FUNCTIONS OF TWO AND THREE VARIABLES

  • Shaher Momani
  • PRAVEEN AGARWAL Anand ICE, Jaipur
  • Shilpi Jain
  • Clemente Cesarano

Resumen

The major objective of the present article is to study the new extension
of hypergeometric functions of two and three variables by the using of 2 parameters
Mittag-Leffler function. In the present article mainly, we study the integral representations of these extended hypergeometric functions and obtained some important
properties of the extended Riemann-Liouville type fractional derivative operator. We
have also derived some generating functions for generalized hypergeometric functions
by using the extended Riemann-Liouville type fractional derivative operator.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with Applications, J. Comput. Appl. Math, 55, 99-124,1994.
[2] Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Eulers Beta function, J. Comput.
Appl. Math., 78, 19-32, 1997.
[3] Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent
hypergeometric functions, Appl. Math. Comput, 159, 589-602, 2004.
[4] Ozergin, E.; ¨ Ozarslan, M.A.; Altın, A. Extension Gamma, Beta and Hypergeometric Functions, J. ¨
Comput. Appl. Math., 235, 4601-4610, 2011.
[5] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions,
Vol. I, McGraw-Hill, New York- Toronto-London, 1953.
[6] Exton, H., Multiple hypergeometric functions and applications, Ellis Horwood, 1976.
[7] Srivastava, H.M. and Karlsson, P.W., Multiple Gaussian Hypergeometric Series, Halsted, New York
1985.
[8] Srivastava, H.M. and Manocha,H.L.,A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto,
1984.
[9] Ozarslan, M.A. and ¨ Ozergin, E., Some generating relations for extended hypergeometric functions ¨
via generalized fractional derivative operator, Math. Comput. Model. 52, 18251833, 2010.
[10] S¸ahin,R. , An extension of some Lauricella hypergeometric functions, AIP Conf. Proc. 1558,
11401143 , 2013.
[11] Srivastava, H.M., Parmar R.K.and Chopra, P., A class of extended fractional derivative operators
and associated generating relations involving hypergeometric functions, Axioms-I 238258, 2012.
[12] Rainville, E.D., Special Functions; Macmillan: New York, NY, USA, 1960.
[13] Olver, W.J.F.; Lozier, W.D.; Boisvert, F.R.; Clark, W.C.,NIST Handbook of Mathematical Functions ; Cambridge University Press, New York, NY, USA, 2010.
[14] Goyal, R., Agarwal, P., Momami, S.; Rassias, M.T. An Extension of Beta Function by Using wiman’s
function. Axioms, 10, 187,2021.
[15] Jain, S., Goyal, R., Agarwal, P., Lupica, A., & Cesarano, C., Some results of extended beta function
and hypergeometric functions by using Wimans function. Mathematics, 9(22), 2944, 2021.
[16] Srivastava, H.M., Saxena R.K. , Operators of fractional integration and their applications, Appl.
Math. Comput. 118, 1-52, 2001.
[17] Srivastava,H.M., Manocha, H.L., A Treatise on Generating Functions, Halsted, Ellis Horwood, Wiley, New York, Chicester, New York, 1984.
[18] Jain, S., Goyal, R., Agarwal, R.P. and Agarwal, P., Certain Extension of Riemann Liouville Fractional Derivative Operator by Using Wimans Function, book chapter edited by Prof. Panos M.
Pardalos (USA) and prof. Themistocles M. Rassias, MATHEMATICAL ANALYSIS, OPTIMIZATION, APPROXIMATION AND APPLICATIONS, 2021.
Publicado
2025-12-05
Sección
Research Articles