On common index divisors and monogenity of certain number fields defined by x^{5}+ax+b
Abstract
Let K = Q(α) be a number field, where α satisfies the monic irreducible polynomial F (x) = x5 + ax + b belonging to Z[x]. The purpose of this paper is to caracterise when a prime p is a common index divisor of K. More precisely, we give explicitly a necessary and sufficient conditions, on a and b for which K is not monogenic. Some useful examples are also given.
Downloads
References
S. Ahmad, T. Nakahara, A. Hameed, On certain pure sextic fields related to a problem of Hasse. Int. J. Alg. Comput., 26(3) (2016), 577–583 .
H. B. Yakkou, A. Chillai, L. E. Fadil, (2021) On power integral bases for certain pure number field defined by x2r .5r −m. Commun Algebra 49(7):2916-2926.
H. Ben Yakkou and L. El Fadil, On monogenity of certain number fields defined by trinomials. (arXiv:2109.08765).
Y. Bilu, I. Gaál, K. Györy, Index form equations in sextic fields: a hard computation. Acta Arithmetica 115(1), (2004), 85–96.
P . Cassou-Nogués, M. J. Taylor, A Note on elliptic curves and the monogeneity of rings of integers. J. Lond. Math. Soc. 37 (2)(1988) 63–72.
Cohen. H., A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag Berlin Heidelberg, (1993).
Dedekind. R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen, 23, (1878), 1–23.
H.T. Engstrom,On the common index divisors of an algebraic field. Ã Trans. Amer. Math. Soc. 32(2) (1930), 223–237.
L. El Fadil, On integral bases and monogeneity of pure sextic number fields with non-squarefree coefficients. J. Number Theory 228:375–389. https://doi.org/10.1016/j.jnt.2021.03.025.
L. El Fadil,On power integral bases for certain pure sextic fields. Bol. Soc. Paran. Math. (2022) (8 pages). DOI: 10.5269/bspm.42373.
L. El Fadil, On non monogenity of certain number fields defined by a trinomial x6 + ax3 + b. J. Number Theory, available online Junary 24, 2022, https://doi.org/10.1016/j.jnt.2021.10.017.
L. El Fadil, On common index divisor and monogenity of certain number fields defined by a trinomial x5 + ax2 + b. Commun. Algebra, available online Junary 23, 2022,https://doi.org/10.1080/00927872.2022.2025820.
L. El Fadil, On Newton polygon’s techniques and factorization of polynomial over henselian valued fields. J. of Algebra and its Appl, (2020), https://doi.org/S0219498820501881.
L. El Fadil, J. Montes, E. Nart , Newton polygons and p-integral bases of quartic number fields. J. Algebra and Appl, 11(4), (2012), 1250073.
I. Gaál, Diophantine equations and power integral bases. Theory and algorithm, Second edition,Boston, Birkhäuser, (2019).
I. Gaál and K. Györy, Index form equations in quintic fields. Acta Arith. 89 (1999), 379–396.
I. Gaál, L. Remete, Non-monogenity in a family of octic fields. Rocky Mountain J. Math, 47(3), (2017), 817–824.
I. Gaál, L. Remete, Power integral bases and monogenity of pure fields. J. of Number Theory,173, (2017), 129–146.
I. Gaál, An experiment on the monogenity of a family of trinomials. JP Journal of Algebra Number Theory Appl. 51(1) (2021) 97–111
J. Guaàrdia, J. Montes, E. Nart, Newton polygons of higher order in algebraic number theory. Tran. Math. Soc. American 364(1), ( 2012), 361–416.
Hasse. H., Zahlentheorie, Akademie-Verlag, Berlin, (1963).
K. Hensel, Arithemetishe untersuchungen uber die gemeinsamen ausserwesentliche Discrimi-nantentheiler einer Gattung. J. Reine Angew Math, 113, (1894), 128–160.
Hensel. K., Theorie der algebraischen Zahlen, Teubner Verlag, Leipzig, Berlin, 1908.
R. Ibarra, H. Lembeck, M. Ozaslan, H. Smith, K. E. Stange, Monogenic fields arising from trinomials. arXiv:1908.09793v2.
A. Jakhar, S. K. Khanduja, N. Sangwan, Characterization of primes dividing the index of a trinomial. Int. J. Number Theory 13(10) (2017), 2505–2514.
A. Jakhar and S. Kumar, On non-monogenic number fields defined by x6 + ax + b. Canadian Mathematical Bulletin (2021), https://doi.org/10.4153/S0008439521000825.
B. Jhorar, S. K. Khanduja, On power basis of a class of algebraic number fields. I. J. Number Theory, 12(8)(2016), 2317–2321.
L. Jones, Infinite families of non-monogenic trinomials. Acta Sci. Math.87 (1-2), (2021) 95–105.
L. Jones, Some new infinite families of monogenic polynomials with non-squarefree discriminant. Acta Arith. 197(2), (2021) 213–219.
L. Jones, P. Tristan, Infinite families of monogenic trinomials and their Galois groups. Int.J. Math. 29(5), (2018) (11 pages).
L. Jones, D. White, Monogenic trinomials withnon-square free discriminant. (arXiv:1908.0794).
J. Montes, E. Nart, On theorem of Ore, Journal of Algebra. 146(2), (1992), 318–334.
Y. Motoda, T. Nakahara, S.I.A. Shah,On a problem of Hasse. J. Number Theory 96(2):326–334.https://doi.org/10.1006/jnth.2002.2805.
Narkiewicz. W., Elementary and Analytic Theory of Algebraic Numbers, Third Edition, Springer, (2004).
Neukirch. J., Algebraic Number Theory, Springer-Verlag, Berlin (1999).
Ore. O., Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann 99, (1928), 84–117.
A. Pethö, M. Pohst, On the indices of multiquadratic number fields. Acta Arith. 153(4) (2012) 393–414.
L. Spriano, On ramification theory of monogenic extensions. Geom. Topol. Monogr. 3 (2000) 151–164.
S.-L. Tan, D.-Q. Zhang, The determination of integral closures and geometric applications, Adv. Math. 185 (2004) 215–245.
E. Zylinski, Zur Theorie der ausserwesentlicher discriminamtenteiler algebraischer korper. Math. Ann, (73), (1913), 273–274.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).