On the cotangent bundle with vertical modified riemannian extensions
Abstract
Let $M$ be an n-dimensional differentiable manifold with a torsion-free linear connection $\nabla $ which induces on its cotangent bundle ${T^*}M$. The main purpose of the present paper is to study some properties of the vertical modified Riemannian extension on ${T^*}M$ which is given as a new metric in [17]. At first, we investigate a metric connection with torsion on ${T^*}M$. And then, we present the holomorphy properties with respect to a compatible almost complex structure. urthermore, we study locally decomposable Golden pseudo-Riemannian structures on the cotangent bundle endowed with vertical modified Riemannian extension.Downloads
References
Aslanci, S., Cakan, R., On a cotangent bundle with deformed Riemannian extension, Mediterr. J. Math. 11(4), 1251- 1260, (2014).
Aslanci, S., Kazimova , S., Salimov, AA., Some notes concerning Riemannian extensions, Ukrainian Math. J. 62(5), 661-675, (2010).
Bejan, C.L., Eken, S,., A characterization of the Riemann extension in terms of harmonicity, Czech. Math. J. 67(1), 197-206, (2017).
Bejan, C.L., Kowalski, O., On some differential operators on natural Riemann extensions, Ann. Glob. Anal. Geom. 48, 171-180, (2015).
Bejan, C.L., Meri,c, S,.E., Kılı,c, E., Einstein Metrics Induced by Natural Riemann Extensions, Adv. Appl. Clifford Algebras 27(3), 2333-2343, (2017).
Bilen, L., Gezer, A., On metric connections with torsion on the cotangent bundle with modified Riemannian extension, J. Geom. 109(6), 1-17, (2018).
Crasmareanu, M., Hretcanu, C.E., Golden differential geometry, Chaos Solitons and Fractals 38, 1229-1238, (2008).
Calvino-Louzao, E., Garcıa-Rıo, E., Gilkey, P., Vazquez-Lorenzo, A., The Geometry of Modified Riemannian Extensions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2107), 2023-2040, (2009).
Ganchev, G. T., Borisov, A.V., Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulg. Sci. 39, 31-34, (1986).
Gezer, A., Altunbas, M., Notes on the rescaled Sasaki type metric on the cotangent bundle, Acta Math. Sci. 34B(1), 162-174, (2014).
Gezer, A., Bilen, L., Cakmak, A., Properties of Modified Riemannian Extensions, Zh. Mat. Fiz. Anal. Geom. 11(2), 159-173, (2015).
Gezer, A., Cengiz, N., Salimov, A., On integrability of Golden Riemannnian structures, Turk. J. Math. 37, 693-703, (2013).
Hayden, H.A., Sub-spaces of a space with torsion, Proc. Lond. Math. Soc. 34, 27-50, (1932).
Hretcanu, C.E., Crasmareanu, M., Applications of the golden ratio on Riemannian manifolds, Turk. J. Math. 33, 179-191, (2009).
Iscan, M., Salimov, A.A., On Kahler Norden manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 119(1), 71-80, (2009).
Norden, A.P., On a certain class of four-dimensional A-spaces, Izv. Vuzov. Mat. 4, 145-157, (1960).
Ocak, F., Notes about a new metric on the cotangent bundle, Int. Electron. J. Geom. 12(2), 241-249, (2019).
Ocak, F., Some properties of the Riemannian extensions, Konuralp J. of Math. 7(2), 359-362, (2019).
Ocak, F., Some Notes on Riemannian Extensions, Balkan J. Geom. Appl. 24(1), 45-50, (2019).
Ocak, F., Kazimova, S., On a new metric in the cotangent bundle, Transactions of NAS of Azerbaijan Series of Physical-Technical and Mathematical Sciences 38(1), 128-138, (2018).
Ozkan, M., Prolongations of Golden structures to tangent bundles, Diff. Geom. Dyn. Syst. 16, 227-238, (2014).
Patterson, E.M., Walker, A.G., Riemann Extensions, Quart. J. Math. Oxford Ser. 3, 19-28, (1952).
Salimov, A.A., On operators associated with tensor fields, J. Geom. 99(1-2), 107-145, (2010).
Salimov, A., Cakan, R., On deformed Riemannian extensions associated with twin Norden metrics, Chinese Annals of Math. Ser.B. 36, 345-354, (2015).
Salimov, A.A., Iscan, M., Etayo, F., Paraholomorphic B-manifold and its properties, Topol. Appl. 154, 925-933, (2007).
Tachibana, S., Analytic tensor and its generalization, Tohoku Math. J. 12, 208– 221, (1960).
Vishnevskii, V.V., Integrable affinor structures and their plural interpretations, J. of Math. Sci. 108(2), 151-187, (2002).
Yano, K., Ako, M., On certain operators associated with tensor fields, Kodai Math. Sem. Rep. 20, 414-436, (1968).
Yano, K., Ishihara, S., Tangent and Cotangent Bundles, New York, USA, Marcel Dekker, (1973).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).