New analogous of Ramanujan’s remarkable product of theta-function and their explicit evaluations

  • B. N. Dharmendra

Abstract

In this article, we define µm,n for any positive real numbers m and n involving Ramanujan’s product of theta-functions f(q) and f(−q2), which is analogous to Ramanujan’s remarkable product of theta-functions and establish its several properties by Ramanujan. We establish general theorems for the explicit evaluations of µm,n and its
explicit values.

Downloads

Download data is not yet available.

References

B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

B. C. Berndt, Ramanujan’s Notebooks, Part IV, Springer-Verlag, New York, 1994.

B. C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1997.

B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan’s remarkable product of the theta-function, Proc. Edinburgh Math. Soc., 40 (1997), 583–612.

B. N. Dharmendra, New Ramanujans Remarkable Product of Theta-Function and Their Explicit Evaluations. Proc. Jangjeon Math. Soc. 22 (4) (2019), 517–528.

B. N. Dharmendra and S. Vasanth Kumar, Theorems on Analogous of Ramanujan’s Remarkable Product of Theta Function and Their Explicit Evaluations. Bol. Soc. Parana. Mat., 40 (2022), 1–10.

M. S. Mahadeva Naika, Some theorems on Ramanujan’s cubic continued fraction and related identities. Tamsui Oxf. J. Math. Sci. 24 (3) (2008), 243–256.

M. S. Mahadeva Naika and B. N. Dharmendra, On some new general theorems for the explicit evaluations of Ramanujan’s remarkable product of theta-function Ramanujan J. 15 (3) (2008), 349–366.

M. S. Mahadeva Naika, B. N. Dharmendra and K. Shivashankara, On some new explicit evaluations of Ramanujan’s remarkable product of theta-function, South East Asian J. Math. Math. Sci. 5 (1) (2006), 107-119.

M. S. Mahadeva Naika and M. C. Maheshkumar, Explicit evaluations of Ramanujan’s remarkable product of thetafunction, Adv. Stud. Contemp. Math., 13 (2) (2006), 235-254.

M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, General formulas for explicit evaluations of Ramanujan’s cubic continued fraction, Kyungpook Math. J., 49 (3) (2009), 435–450.

M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, On some remarkable product of theta-function, Aust. J. Math. Anal. Appl., 5 (1) (2008), 1-15.

Nipen Saikia, Some Properites, Explicit Evaluation, and Applications of Ramanujan’s Remarkable Product of Theta-Functions, Acta Math Vietnam, Journal of Mathematics, DOI 10.1007/s40306-014-0106-8, (2015).

S. Y. Kang, Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan’s lost notebook. Ramanujan J., 3 (1) (1999), 91–11.

S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.

Published
2025-04-15
Section
Research Articles