Existence of solutions for elliptic systems involving the fractional p(x)-Laplacian
Abstract
In this paper, we consider a class of non-homogeneous fractional (p (.), q (.))−Laplacian systems. By using variational methods and combining with the theory of Lebesgue and fractional Sobolev spaces with variable exponents, we prove the existence of solutions to the system.
Downloads
References
G. Alberti, G. Bouchitté, P. Seppecher, Phase transition with the line-tension effect. Arch. Ration. Mech. Anal 144 (1), 1-46, (1998).
E. Azroul, A. Benkirane, A, Boumazourh, M. Chimi, Existence results for fractional p(x, .) -Laplacian problem via the nehari manifold approach. Applied Mathematics & Optimization, (2020).
E. Azroul, A. Benkirane, A, Boumazourh, M. Chimi, Eigenvalue problems involving the fractional p(x)-Laplacian operator. Adv. Oper. Theory 4, 539-555, (2019).
E. Azroul, A. Benkirane, A, Boumazourh, M. Chimi, M. Srati, Three solutions for fractional p(x, .)-Laplacian Dirichlet problems with weight. J. Nonlinear Funct. Anal., (2020), Article ID 22.
A. Bahrouni, V. Radulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. 11, 379-389, (2018).
G-M Bisci and V-D. Radulescu, Multiplicity results for elliptic fractional equations with subcritical term. Nonlinear Differ. Equ. Appl. 22, 721-739, (2015).
R. Biswas, S Tiwari, Nehari manifold approach for fractional p(.)-Laplacian system involving concave-convex nonlinearities. Electronic Journal of Differential Equations, No. 98, pp. 1-29, (2020).
A, Boumazourh, E. Azroul. On a class of fractional systems with nonstandard growth conditions. J. Pseudo-Differ. Oper. Appl. (2019).
C. Bucur, E. Valdinoci. Non Local Diffusion and Application, Lecture Notes of the Unione Matematica Italiana. Springer, Berlin. (2016).
L.A. Cafferelli, Nonlocal equations drifts and games. Nonlinear Partial Differential Equations, Abel Symposium, vol. 7, 37-52, (2012).
R. Chammem, A. Ghanmi, A. Sahbani, Existence of solution for a singular fractional Laplacian problem with variable exponents and indefinite weights. Complex Variables and Elliptic Equations, (2020).
N.T. Chung; H.Q Toan, On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collectanea Mathematica, (2019).
R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL. (2004).
L. Diening, P. Harjulehto, P. Hasto, M. Rùzicka, Lebesgue and Sobolev spaces with variable exponents, Springer. (2010).
S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of R ⋉, Lecture Notes, Scuola Normale Superiore di Pisa,15. Edizioni della Normale,Pisa. 2017. London (2004).
E. Di Nezza, , G. Palatucci, E. Valdinoci. Hithiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573, (2012).
A. Djellit, S. Tas, Existence of solutions for a class of elliptic systems in R N involving the p-Laplacien. Electron. J. Differential Equations 56, 1-8, (2003).
A. Djellit, Z. Youbi, S. Tas, Existence of solutions for elliptic systems in RN involving the p(x)-Laplacian, EJDE, 131,1-10,(2012).
G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin, (1976).
A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. App, 300 30-42, (2004).
X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces W k,p(x)( RN ), J. Math. Appl, 262, 749-760, (2001).
X. Fan, D. Zhao, On the spaces Lp(x) and W1,p(x) . J. Math. Appl. 263, 424-446, (2001).
K. Ho , YH. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(.)-Laplacian. Nonlinear Anal,18,179-201, (2019).
Kaufmann, U., Rossi, J.D., Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ. 76, 1–10 (2017).
Klafter, M.J. The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37, 161-208, (2004).
J-Ik Lee, J-M. Kim, Y-H. Kim, and J. Lee, Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian. J. Math. Phys. 61, 011505, (2020).
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, 67–112, (2007).
Y. Sire, E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal., 256 (6),1842-1864, (2009).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).