A quasistatic electro-elastic contact problem with long memory and slip dependent coefficient of friction
Abstract
In this paper we consider a mathematical model describing a quasistatic frictional contact problem between a deformable body and an obstacle, say a foundation. We assume that the behavior of the material is described by a linear electro-elastic constitutive law with long memory. The contact is modeled with a version of Coulomb's law of dry friction in which the normal stress is prescribed on the contact surface. Moreover, we consider a slip dependent coefficient of friction. We derive a variational formulation for the model, in the form of a coupled system for the displacements and the electric potential. Under a less assumption on the coecient of friction, we prove the existence result of weak solutions of the model. We can show the uniqueness of solution by adding another condition (3.10). The proofs are based on arguments of time-dependent variational inequalities, dierential equations and Banach fixed point theorem.
Downloads
References
R. C. Batra, J. S. Yang, Saint-Venant's principle in linear piezoelectricity, J. Elast. 38, 209-218, (1995).
P. Bisenga, F. Lebon, F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact Mechanics, J. A. C. Martins and Manuel D. P. Monteiro Marques (Eds.), Kluwer, Dordrecht, 2002, 347-354.
N. Chougui, S. Drabla, A quasistatic electro-viscoelastic contact problem with adhesion, Bull. Malays. Math. Sci. Soc. 39, 1439-1456, (2016).
C. Corneschi, T.-V. Hoarau-Mantel, M. Sofonea, A quasistatic contact problem with slip dependent coefficient of friction for elastic materials, Journal of Applied Analysis 8(1), 63-82, (2002).
D. Danan, Modelisation, analyse et simulations numeriques de quelques problemes de contact, Universite de Perpignan, 2016.
S. Drabla, Z. Zellagui, Analysis of an electro-elastic contact problem with friction and Adhesion, Studia Universitatis Babes-Bolyai, Mathematica, Volume LIV, Number 1, 2009.
G. Duvaut, J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.
Z. Lerguet, Z. Zellagui, H. Benseridi, S. Drabla, Variational analysis of an electro viscoelastic contact problem with friction, Journal of the Association of Arab Universities for Basic and Applied Sciences 14, 93-100, (2013).
Z. Lerguet, M. Shillor, M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electronic Journal of Differential equations, 2007(170), 1-16, (2007).
F. Maceri, P. Bisegna , The unilateral frictionless contact of a piezoelectric body with a rigid support, Math. Comp. Modelling 28, 19-28, (1998).
S. Migorski, A.Ochal, M. Sofonea, Analysis of a quasistatic contact problem for piezoelectric materials, J. Math.Anal. Appl. 382, 701-713, (2011).
R. D. Mindlin, Polarisation gradient in elastic dielectrics, Int. J. Solids Struct. 4, 637-663, (1968).
R. D. Mindlin, Continuum and lattice theories of inuence of electromechanicalcoupling on capacitance of thin dielectric films, Int. J. Solids Struct. 4, 1197-1213, (1969).
A. Morro, B. Straughan, A uniqueness theorem in the dynamical theory of piezoelectricity, Math. Methods Appl. Sci. 14 (5), 295-299, (1991).
D. Motreanu, M. Sofonea, Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials, Abstr. Appl. Anal. 4 , 255-279, (1999).
Y. Ouafik, Contribution a l'etude mathematique et numerique des structures piezoelectriques en Contact, These de doctorat, Universite de Perpignan, 2007.
P. D. Panagiotopoulos, Inequality Problems in Mechanical and Applications, Birkhauser, Basel, 1985.
V. Z. Patron, B.A.Kudryavtsev, Electromagnetoelasticity, Piezoelectrics and Electrically conductive Solids, Gordon & Breach, london, 1988.
M. Sofonea, El-H. Essoufi, A piezoelectric contact problem with slip dependent coe_cient of friction, Mathematical Modelling and Analysis 9(3), 229{242, (2004).
M. Sofonea, El-H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body, Advances in Mathematical Sciences and Applications 14(2), 613{631, (2004).
M. Sofonea, R. Arhab, R. Tarraf, Analysis of electroelastic frictionless contact problems with adhesion, J. Appl. Math. 2006, 1-25, (2006).
M. Sofonea, A. Matei, Variational inequalities with application, A study of antiplane frictional contact problems, Springer, New York, 2009.
R. A. Toupin, A dynamical theory of elastic dielectrics, Int. J. Engrg. Sci. 1, 101-126, (1963).
R. A. Toupin, Stress tensors in elastic dielectrics, Arch. Rational Mech. Anal. 5, 440-452, (1960).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).