Vitesse de convergence de l'estimateur des moindres carrés dans les ARCH périodiques
Abstract
On étudie l'estimateur des moindres carrés d'un modèle ARCH(p) périodique (PARCH(p)). Cet estimateur est construit à partir de la représentation AR périodique (PAR) du modèle PARCH. Nous montrons que cet estimateur est asymptotiquement stable, fortement consistent et nous déterminons sa vitesse de convergence presque sûre (p:s:).
Downloads
References
A. Aknouche, A. Bibi, Quasi maximum likelihood estimation of periodic GARCH processes. J. Time Ser. Anal, 29(1), 19-45, (2009).
A. Aknouche, Causality conditions and autocovariance calculations in PVAR models. Journal of Statistical Computation and Simulation, 77, 769-780, (2007).
I. V. Basawa, R. Lund, Large sample properties of parameters estimates for periodic ARMA models. Journal of Time Series Analysis, 22, 1-13, (2001).
A. Bibi, A. Aknouche, On periodic GARCH processes: Stationarity, Existence of moments and geometric ergodicity. Math. methods of Statistics, 17(4), 305-316, (2008).
T. Bollerslev, E. Ghysels, Periodic autoregressive conditional heteroscedasticity. J. of Business & Economic Statistics, 14, 139-151, (1996).
P.E. Caines, Stochastic linear systems. Wiley & Sons, (1988).
G. Ciolek, P. Potorski, Bootstrapping periodically autoregressive models . ESAIM. Probability and Statistics, 21, 2157-2178, (2017).
R. F. Engle, T. Bollerslev, Modelling the persistence of conditional variances. Econometric Review, 5, 1-50, (1986).
D. Freedman, Another note on the Borel-Cantilli lemma and the strong law with the Poisson approximation as a by-product. Ann. Prob. 1, 910-925, (1973).
E.G. Gladyshev, Periodically correlated random sequences. Soviet Mathematics, 2, 385-388, (1961).
L. Glosten, R. Jegannathan, D. Runke, Relationship between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779-1801, (1993).
C. Gourieroux, A. Monfort, Qualitative threshold ARCH models. Journal of Econometrics, 52, 159-200, (1992).
D. Guegan, J. Diebolt, Probabilistic properties of the β − ARCH model. Statistica Sinica, 4, 71-87, (1994).
T.L. Lai, C.Z. Wei, Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist, 10(1), 154-166, (1982).
G.W. Schwert, Stock volatility and the crash of 87. Review of Financial Studies, 3, 77-102, (1990).
G. A. F. Seber, A matrix handbook for statisticians. Wiley & Sons, (2008).
T.A. Ula, A.A. Smadi, Periodic stationary conditions for periodic autoregressive moving average processes as eigenvalues problems. Water Resources Research, 33, 1929-1934, (1997).
S.O.A. Voffal, L’estimateur des moindres carres dans les modeles ARCH. C.R. Acad. Sci. Paris. t. 322, serie I, 971-974, (1996).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



