Generalized N$\Ddot{O}$rlund Means of Complex Uncertain Variables
Generalized N$\Ddot{O}$rlund Means of Complex Uncertain Variables
Abstract
In this article we have introduced the notion of generalized N$\ddot{o}$rlund mean associated with sequence of complex uncertain variables. The generalized N$\ddot{o}$rlund mean is defined based on two N$\ddot{o}$rlund means. We have established some results on the relationship of two regular N$\ddot{o}$rlund
means. The focus is to show that there is a third mean, which is stronger than the two N$\ddot{o}$rlund means
Downloads
References
\bibitem{dowari2020} P.J. Dowari and B.C. Tripathy, Lacunary difference sequences of complex uncertain variables, Methods of Functional Analysis and Topology, 26(4)(2020), 327-340. https://doi.org/10.31392/MFAT-npu26\_4.2020.04 \\
\bibitem{das2020} Das, B., Tripathy, B. C., Debnath, P., and Bhattacharya, B., \emph{Study of matrix transformation ofuniformly almost surely convergent complex uncertain sequences}, Filomat, 34(2020), no. 14, 4907-4922. \\
\bibitem{liu2009some} Liu B., \emph{Some Research Problems in Uncertainty Theory}, Journal of Uncertain Systems, \textbf{3}(2009), no. 1, 3-10. \\
\bibitem{liu2016} Liu B., \emph{Uncertainty Theory}, Springer-Verlag, 5th Edition, Berlin, 2016.\\
\bibitem{you2009convergence} You C., \emph{On the convergence of uncertain sequences}, Mathematical and Computer Modeling, \textbf{49}(2009), no. 3-4, 482-487. \\
\bibitem{datta2019} Datta D. and Tripathy B. C., \emph{convergence of complex uncertain double sequences}, New Mathematics and Natural Computation, 16(3)(2020), 447-459.
\bibitem{peterson1966}Petersen, G. M., \emph{Regular Matrix Transformations}, McGraw-Hill, 1966. \\
\bibitem{debnath2019} Debnath P. and Tripathy B. C., \emph{On a new class of complex uncertain sequences related to the $\ell_p(\Gamma)$ space}, New Mathematics and Natural Computation, 17(1), (2021), 91-103. doi.no. 10.1142/S1793005721500058. \\
\bibitem{nath2019convergence} Nath P. K. and Tripathy B. C., \emph{Convergent complex uncertain sequences defined by Orlicz function}, Annals of the University of Craiova, Mathematics and Computer Science Series, \textbf{46}(2019), no. 1, 139-149. \\
\bibitem{nath2020} P.K. Nath and B.C. Tripathy, Statistical convergence of complex uncertain sequences defined by Orlicz function, Proyecciones J. Math., 39(2), (2020), 301-315. \\
\bibitem{chen2016convergence} Chen X., Ning Y. and Wang X., \emph{Convergence of complex uncertain sequences}, Jour. Intell. fuzzy syst., \textbf{30}(2016), no. 6, 3357-3366. \\
\bibitem{liu2010expected} Liu Y. and Ha M., \emph{Expected value of function of uncertain variables }, Jour. Uncertain Syst., \textbf{4}(2010), no. 3, 181-186. \\
\bibitem{peng2012} Peng Z., \emph{Complex uncertain variable}, Doctoral Dissertation, Tsinghua University, 2012. \\
\bibitem{tripathy2017} B.C. Tripathy and P.K. Nath: Statistical convergence of complex uncertain sequences, New Mathematics and Natural Computation, 13(3)(2017), 359-374. \\
\bibitem{tripathy2021} S. Saha, B.C. Tripathy, S. Roy, \emph{On Riesz mean of complex uncertain sequences}, Journal of Mathematical Analysis and Applications, 2021, 499(2), 125017, DOI: 10.1016/j.jmaa.2021.125017
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



