Anti $ T_{2} $-generalized topological spaces

  • Harsh V. S. Chauhan Chandigarh University
  • Sheetal Luthra University of Delhi
  • Dimple Pasricha Arya P. G. College

Abstract

In this paper, we investigated non strong hyperconnected generalized topological spaces. Ekici \cite{Eki11} and Devi \cite{Ren12} have provided the results of hyperconnectedness for strong generalized topological spaces. We generalized these results for arbitrary generalized topological spaces. Through the notion of hyperconnectedness of arbitrary generalized topological spaces, we constructed an example which fails Hausdorff characterization of topological spaces \lq\lq A first countable spaces is Hausdorff if and only if every convergent sequence has unique limit\rq\rq. This example also serves the purpose of constructing Anti Hausdorff Fr$\acute{e}$chet space in which every convergent sequence has unique limit required by Novak in \cite{Nov39}.

Downloads

Download data is not yet available.

Author Biographies

Harsh V. S. Chauhan, Chandigarh University

Department of Mathematics

Dimple Pasricha, Arya P. G. College

Department of Mathematics

References

J. B. T. Ayawan and S. R. Canoy jr., Axioms of Countability in Generalized Topologial Spaces, International Mathematical Forum, 8, no. 31, (2013), 1523–1530.

A. Csaszar, Generalized open sets, Acta Math. Hungar., 75 (1997), 65–87.

A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.

A. Csaszar, connected sets, Acta Math. Hungar., 101(2) (2003), 273–279.

A. Csaszar, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (2004), 63–69.

A. Csaszar, Separation properties -modifications of topologies, Acta Math. Hungar. 102 (2004), no. 1-2, 151–157.

A. Csaszar, Generalized open sets generalized topologies, Acta Math. Hungar., 106(1-2) (2005), 53–66.

A. Csaszar, Product of generalized topologies, Acta Math. Hungar., 123(1-2) (2009), 127–132.

E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar., 133 (2011), 140–147.

S. P. Franklin and M. Rajagopalan, Some examples in topology, Transactions of the American Mathematical Society, 155, (2), (1971), 305–314.

N. Levine, Dense topologies, Amer. Math. Monthly, 75 (1968), 847–852.

S. Majumdar and M. Mitra, Anti- Hausdorff spaces, Journal of Physical Sciences, 16 (2012), 117–123.

P. M. Mathew, On hyperconnected spaces, Indian J. Pure Appl. Math., 19(12) (1988), 1180–1184.

W. K. Min, Remarks on separation axioms on generalized topological space, Chungcheong mathematical society, 23 (2) (2010), 293–298.

J. Novak, Surles expaces et surles produits cartesiens, Publ. Fac. Sci. Univ. Masaryk, 273 (1968), 847–852.

S. Palaniammal and M. Murugalingam, Generalized Filters, International Mathematical Forum, 9(36) (2014), 1751–1756.

V. Renukadevi, Remark on Generalized hyperconnectedness, Acta Math. Hungar., 136 (3) (2012), 157–164.

R. X. Shen, A note on generalized connectedness, Acta Math. Hungar., 122 (2009), 231–235.

B. K. Tyagi, H. V. S. Chauhan, R. Choudhary, On - connected sets, International Journal of Computer Applications, 113(16) (2015), 1–3.

B. K. Tyagi and H. V. S. Chauhan, A remark on extremally μ-disconnected generalized topological spaces, Math. Appl. (Brno), 5 (2016), no. 1, 83–90.

B. K. Tyagi, H. V. S. Chauhan, On generalized closed sets in generalized topological spaces, Cubo, 18 (01) (2016), 27–45.

B. K. Tyagi, and Harsh V. S. Chauhan, On some separation axioms in generalized topological spaces, Questions Answers in Gen. topology , 36 (2018), 9-29.

B. K. Tyagi, and Harsh V. S. Chauhan, On Semi-open sets and Feebly open sets in generalized topological spaces, Proyecciones Journal of Mathematics, (2019), (In press).

Published
2024-05-28
Section
Articles