Primal topological spaces

Resumo

The purpose of this paper is to introduce a new structure called primal. Primal is the dual structure of grill. Like ideal, the dual of filter, this new structure also generates a new topology named primal topology. We introduce a new operator using primal, which satisfies Kuratowski closure axioms. Mainly, we prove that primal topology is finer than the topology of a primal topological space. Also, we provide the structure of the base of primal topology and prove other fundamental results related to this new structure. Furthermore, we not only discuss some of this new structure’s properties but also enrich it with many examples.

Downloads

Não há dados estatísticos.

Biografia do Autor

Santanu Acharjee, Gauhati University

Department of Mathematics

Murad ÖZKOÇ, Muğla Sıtkı Koçman University

Departmento of Mathematics

Faical Yacine Issaka, Muğla Sıtkı Koçman University

Department of Mathematics

Referências

A. Al-Omari, S. Acharjee, M. Ozko¸c, A new operator of primal topological spaces. Mathematica, 65(88)(2), 175-183, (2023).

A. Al-Omari and M. H. Alqahtani, Primal structure with closure operators and their applications. Mathematics, 11(24), (2023), 4946.

K. C. Chattopadhyay, W. J. Thron, Extensions of closure spaces. Can. J. Math. 29(6), 1277-1286, (1977).

K. C. Chattopadhyay, O. Njastad, W. J. Thron, Merotopic spaces and extensions of closure spaces. Canad. J. Math. 4, 613-629, (1983).

W. J. Thron, Proximity structures and grills. Math. Ann. 206, 35-62, (1973).

B. Roy, M. N. Mukherjee, On a typical topology induced by a grill. Soochow Jour. Math. 33(4), 771-786, (2007).

B. Roy, M. N. Mukherjee, Concerning topologies induced by principal grills. An. Stiint. Univ. AL. I. Cuza Iasi. Mat. (N.S.), 55(2), 285-294, (2009).

B. Roy, M. N. Mukherjee, On a type of compactness via grills. Mat. Vesnik, 59, 113-120, (2007).

B. Roy, M. N. Mukherjee, S. K. Ghosh, On a new operator based on a grill and its associated topology. Arab Jour. Math. 14(1), 21-32, (2008).

S. Modak, Topology on grill-filter space and continuity. Bol. Soc. Paran. Mat. 31(2), 219-230, (2013).

S. Modak, Grill-filter space. Jour. Indian Math. Soc. 80(3-4), 313-320 (2013).

R. A. Hosny, -sets with grill. Int. Math. Forum, 7(43), 2107-2113, (2012).

A. A. Nasef, A. A. Azzam, Some topological operators via grills. Jour. Linear Top. Alg. 5(3), 199-204, (2016).

R. Thangamariappan, V. Renukadevi, Topology generated by cluster systems. Math. Vesnik, 67(03), 174-184, (2015).

G. Choquet, Sur les notions de filter et grille. Comptes Rendus Acad. Sci. Paris, 224, 171-173, (1947).

A. A. Azzam, S. S. Hussein, H. Saber Osman, Compactness of topological spaces with grills. Italian. Jour. Pure. Appl. Math. 44, 198–207, (2020).

A. Talabeigi, On the Tychonoff’s type theorem via grills. Bull. Iranian Math. Soc. 42(1), 37–41, (2016).

N. Boroojerdian, A. Talabeigi, One-point λ-compactification via grills. Iran. Jour. Sci. Tech. Trans. A: Sci. 41, 909–912, (2017).

M. N. Mukherjee, A. Debray, On H-closed spaces and grills. An. Stiint. Univ. AL. I. Cuza Iasi. Mat. (N.S.), 44, 1-25, (1998).

I. Loncar, A Note on inverse systems of S(n)-closed spaces. Sarajevo Jour. Math. 23(1), 117-130, (2015).

S. Willard, General topology. Courier Corporation, (2012).

K. Kuratowski, Topology: Volume I. Elsevier, (2014).

D. Jankovic, T. R. Hamlett, New topologies from old via ideals. American Math. Monthly 97(4), 295-310, (1990).

B. C. Tripathy, M. Sen, S. Nath, On generalized difference ideal convergence in generalized probabilistic n-normed spaces. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 91(1), 29-34, (2021).

H. Albayrak, O. Olmez, S. Aytar, Some set theoretic operators preserving ideal Hausdorff convergence. Real Anal. Exchange, 47(1), 179-190, (2022).

C. J. Isham, An introduction to general topology and quantum topology. In Physics, Geometry and Topology, Springer, Boston, MA. 129-189, (1990).

Publicado
2025-01-16
Seção
Artigos