On some new scenario of almost boundedness using matrices
Resumen
The authors M. F. Rahman and A. B. M. R. Karim have structured and studied the space space $r^w_g(t,s)$ and have computed its various properties like completeness, duals and many others as can be seen in \cite{[15]}. The basic structure of this paper is to further study it and investigate for the characterization with sequences of almost bounded $f_\infty$, almost convergent $f$ and almost sequences converging to zero $f_0$. Also, we will prove that $\widetilde{F}$ is not solid, where symbol $\widetilde{F}$ represents space having Riesz transform in $f$.
Descargas
Citas
\bibitem{Mas2i} M. M. AlBaidani, Statistical convergence of $\Delta$-spaces using fractional Order, Symmetry 2022, 14(8), 1685.
\bibitem{Mas2} M. M. AlBaidani and J. J. McDonald, On the block structure and frobenius normal form of powers of matrices, The electronic journal of linear algebra ELA, 35(1)(2019), 297-306.
\bibitem{Mas4} M. M. AlBaidani, H. M. Srivastava and A. H. Ganie, Notion of non-absolute family of spaces, Int. J. Nonlinear Anal. Appl. In Press, 1–11; http://dx.doi.org/10.22075/ijnaa.2021.24072.2664
\bibitem{[2]} S. Banach, The\"ories des operations lin\'earies, Warszawa, 1932.
\bibitem{[3]} J. Boos, Classical and modern methods in summability, Oxford University Press, Oxford, UK, 2001.
\bibitem{HD1} D. Fathima and A. H. Ganie, Almost convergence property of generalized Riesz spaces, Journal of Applied Mathematics and Computation, 4(4)(2020), 249-253.
\bibitem{D1i} D. Fathima and A. H. Ganie, On some new scenario of $\Delta$- spaces, J. Nonlinear Sci. Appl., 14 (2021), 163-167.
\bibitem{HD3} A. H. Ganie, Sigma bounded sequence and some matrix transformations, Algebra Letters, 3(2013), 1-7.
\bibitem{HD5} A. H. Ganie, and N. A. Sheikh, On some new sequence space of non-absolute type and matrix transformations, Jour. Egyptain Math. Soc., 21( 2013), 34-40.
\bibitem{HD4} A. H. Ganie and N. A. Sheikh, Infinite matrices and almost bounded sequences, Vietnam Journal of Mathematics, 42(2)(2014), 153-157.
\bibitem{[6]} A. H. Ganie and N. A. Sheikh, Infinite matrices and almost convergence, Filomat, 29(6)(2015), 1183-1188.
\bibitem{HD6} A. H. Ganie, B. C. Tripathy, N. A. Sheikh and M. Sen, Invariant means and matrix transformations, Functional Analysis: Theory, Methods \and Applications,2 (2016), 28-33.
\bibitem{HD7} A. H. Ganie, A. Mobin N. A. Sheikh and T. Jalal, New type of Riesz sequence space of non-absolute type, J. Appl. Comput. Math., 5(1)(2016), 1-4.
\bibitem{[9]} S. A. Gupkari, Some new sequence spaces and almost convergence, Filomat, 22(2)(2008), 59-64.
\bibitem{[10]} H. Kizmaz, On certain sequence spaces I. Can. Math. Bull. 25(2)(1981), 169-176.
\bibitem{[11]} G. G. Lorentz, A contribution to the theory of divergent series, Acta Math., (80)(1948), 167-190.
\bibitem{10ij} I. A. Malik and T. Jalal, Measures of noncompactness in $(\overline{N}^q_{\Delta^{-}})$ summable difference sequence space, J. Math. Ext.,
13(4)(2019), 155-171.
\bibitem{[12]} M. Mursaleen, Infinite matrices and almost convergent sequences, Southeast Asian Bull. Math., 19(1)(1995), 45-48.
\bibitem{[13]} S. Nanda, Matrix transformations and almost boundedness, Glas. Mat., 14(34) (1979) 99-107.
\bibitem{[14]} G. M. Petersen, Regular matrix transformations. McGraw-Hill Publishing Co. Ltd., London-New York-Toronto, 1966.
\bibitem{[15]} M. F. Rahman and A. B. M. R. Karim, Generalized Riesz sequence space of non-absolute type and some matrix mappings, Pure Appl. Math. J., 4(3)(2015), 90-95.
\bibitem{[16]} N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedago. Nygr., 28(1)(2012) 47-58.
\bibitem{[17]} N. A. Sheikh and A. H. Ganie, On the spaces of $\lambda$-convergent sequences and almost convergence, Thai J. Math., 11(2)(2013) 393-398.
\bibitem{[18]} J. Tanweer and A. H. Ganie, Almost Convergence and some matrix transformation, Shekhar (New Series)- Int. J. Math., 1(1)(2009) 133-138.
\bibitem{[19]} J. Tanweer, S. A. Gupkari and A. H. Ganie,, Infinite matrices and $\sigma$-convergent sequences, Southeast Asian Bull. Math. 36(6)
(2012), 825-830.
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



