A new bound for the zeros of quaternionic polynomial

Abstract

This paper investigates the position of zeros of quaternionic polynomials. Recently, it was demonstrated that a quaternionic polynomial with real and positive coefficients obeying monotonicity contains all of its zeros in a four-dimensional closed unit ball. In this work, we identify new regions for the zeros of lacunary-type quaternionic polynomials and establish closed balls, centered at one, that encompass all the zeros of such polynomials.

Downloads

Download data is not yet available.

Author Biographies

Bilal Dar, National Institute of Technology Srinagar

Department of Mathematics

Abdul Liman, National Institute of Technology Srinagar

Department of Mathematics

References

A. Aziz, B. A. Zargar, Some extension of Enestrom-Kakeya theorem, Glas´nik Mathematiki., 31 (1996), 239-244.

N. Carney, R. Gardner, R. Keaton and A. powers, The Enestrom-Kakeya theorem of a quaternionic variable, J. Approx. Theory, 250 (2020), 105-325.

A. Cauchy, Exercises de mathematique, Oeuvres, 9 (1829), 122.

G. Enestrom, Remarque sur un theoreme relatif aux racines de I’equation anxn + ... + a0 = 0 ou tous les coefficients sont reels et positifs, Tohoku Math. J., 18 (1920), 34-36.

G. Gentili, C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J., 56 (2008), 655-667.

G. Gentili, D. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math., 216 (2007), 279-301.

G. Gentili, D. Struppa, On the multiplicity of zeros of polynomials with quaternionic coefficients, Milan J. Math., 76 (2008), 15-25.

P. R. Girard, The Quaternion Group and Modern Physics. Eur. J. Phys. 5 - 25, 1984.

N. K. Govil, Q. I. Rahman, On the Enestrom-Kakeya theorem, Tohoku Math. J., 20 (1920), 126-136.

A. Joyal, G. Labelle, Q. I. Rahman, On the location of zeros of polynomials, Can. Math. Bull., 10 (1967), 53-63.

S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tˆohoku Math. J., 2 (1912–13), 140–142.

M. Marden, Geometry of polynomials, Math. Surveys, 3 (1966).

G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in polynomials: Extremal problems, Inequalities, Zeros, World Scientific publishing Co., Singapore, (1994).

G. V. Milovanovic, A, Mir and A. Ahmad, On the zeros of quaternionic polynomial with restricted coefficients, Lin. Alg. and its Appl., 653, (2022), 231-245.

S. Mir, A. Liman, Some extensions of Enstrom Kakeya Theorem for Quaternionic Polynomials, Korean J. Math., 30 (2022), No. 4, 615-628.

R. Mukundan, Quaternions: From Classical Mechanics to Computer Graphics and Beyond, Department of Computer Science, University of Canterbury, Christchurch, New Zealand.

D. Tripathi, A note on Enestrom-Kakeya theorem for a polynomial with quaternionic variable, Arab. J. Math., 9 (2020), 707-714.

Published
2025-01-19
Section
Articles