Certain additive mappings on semiprime rings and their characterization
Abstract
The objective of this article is to show that an additive mapping $\mathcal{H}:\mathcal{A}\to \mathcal{A}$ is a $\phi$-centralizer on $\mathcal{A}$ if it satisfies one of the following identities:
\begin{enumerate}
\item [$(i)$] $\mathcal{H}(a_1^{p}a_2^{p}+a_2^{p}a_1^{p})=\mathcal{H}(a_1^p)\phi(a_2^{p})+\phi(a_2^p)\mathcal{H}(a_1^{p})$
\item [$(ii)$] $2\mathcal{H}(a_1^{p}a_2^{p})=\mathcal{H}(a_1^p)\phi(a_2^{p})+\phi(a_2^p)\mathcal{H}(a_1^{p})$
\end{enumerate}
for all $a_1,a_2\in \mathcal{A}$, where $p\geq 1$ is a fixed integer, $\phi$ is a surjective endomorphism on a $p!$-torsion free semiprime ring $\mathcal{A}$. Some extensions of these results are also presented in the setting of ring with involution $``\star"$. Furthermore, we also give the verity of examples that illustrate and enrich the subject matter.
Downloads
References
Albas, E., On ϕ-centralizers of semiprime rings, Siberian Math. J. 48 : 2 (2007), 191–196.
Ansari, A.Z., Characterization of additive mappings on semiprime rings, Rend. Circ. Mat. Palermo, II. Ser, 73 (2024), 899–906.
Ansari, A. Z., Shujat, F. and Alhendi, G., Ideals, centralizers and symmetric bi-derivations on prime rings, International Journal of Mathematics and Computer Science, 15(2019), no. 2, 549–557.
Ashraf, M. and Mozumder, M. R., On Jordan α-⋆-centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 23, 1103-1112.
Beidar, K. I., Mattindale W.S., and Mikhalev, A. V., Ring with generalized identities, Markel Dekker Inc. New York, 1996.
Chung, L.O. and Luh, J., Semiprime ring with nilpotent derivatives, Canad. Math. Bull. Vol 24(4), 1981, 415-421.
Daif, M. N. and Tammam El-Sayiad, M. S., On θ-Centralizers of semiprime rings (II), St. Petersburg Math. J., Vol. 21 (2010), No. 1, Pages 43-52.
Helgosen, S., Multipliers of Banach algebras, Ann. of Math., 64 (1956) 240-254.
Herstein, I. N. , Topics in Ring Theory, Univ. Chicago Press, Chicago. 1969.
Johnson, B. E. ,An introduction to the theory of centralizers, Proc. London Math. Soc., 14 (1964), 299-320 .
Johnson, B. E. , Centralizers on certain topological algebras, J. London Math. Soc., 39 (1964), 603-614.
Johnson, B. E. , Continuity of centralizers on Banach algebras, J. London Math. Soc., 41 (1966), 639-640.
Shujat, F., Khan, S. and Ansari, A. Z., On centralizers and multiplicative generalized derivations of semiprime ring, Italian Journal Of Pure And Applied Mathematics, N. 44(2020), 229–237.
Vukman, J., An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol., 40(3) (1999), 447-456.
Wang, J. K., Multipliers of commutative Banach algebras, Pacific. J. Math., 11 (1961), 1131-1149.
Wendel, J. G., Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-266.
Zalar, B., On centralizers of semiprime rings, Comment. Math. Univ. Carol., 32 (1991), 609-614.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



