Generalized solutions for time $\psi$-fractional evolution equations
Abstract
This paper focuses on the time fractional wave problem with the use of a new fractional derivative in Colombeau algebra. Using Banach's fixed point theorem and Laplace transforms, we give and prove the integral solution of the problem. In Colombeau's algebra, The existence and uniqueness of the solution are demonstrated using the Gronwall lemma.Downloads
References
Benmerrous, A, Chadli,L. S, Moujahid, A, Elomari,M. H, and Melliani, S., "Generalized Cosine Family", Journal of Elliptic and Parabolic Equations, 8(1), pp. 367-381 (2022).
Benmerrous, A, Chadli,L. S, Moujahid, A, Elomari,M. H, and Melliani, S., "Generalized Fractional Cosine Family", International Journal of Difference Equations (IJDE), 18(1), pp. 11-34 (2023).
Benmerrous, A, Chadli,L. S, Moujahid, A, Elomari,M. H, and Melliani, S., "Generalized solutions for time −fractional heat equation", Filomat, 37, 9327–9337 (2023).
Benmerrous, A, Chadli,L. S, Moujahid, A, Elomari,M. H, and Melliani, S., "Generalized solution of Schrödinger equation with singular potential and initial data", Int. J. Nonlinear Anal. Appl, 13(1), pp. 3093-3101 (2022).
Benmerrous, A, Chadli,L. S, Moujahid, A, Elomari,M. H, and Melliani, S., "Solution of Non-homogeneous Wave Equation in Extended Colombeau Algebras", International Journal of Difference Equations (IJDE), 18(1), 107-118 (2023).
Benmerrous, A, Chadli,L. S, Moujahid, A, Elomari,M. H, and Melliani, S., "Solution of Schrödinger type Problem in Extended Colombeau Algebras", In 2022 8th International Conference on Optimization and Applications (ICOA), pp. 1-5 (2022, October).
Bourgain, J., "Global solutions of nonlinear Schrödinger equations", AMS, Colloquium Publications, vol.46 (1999).
Chadli, L. S., Benmerrous, A., Moujahid, A., Elomari, M. H., and Melliani, S., "Generalized Solution of Transport Equation", In Recent Advances in Fuzzy Sets Theory, Fractional Calculus, Dynamic Systems and Optimization, pp. 101-111 (2022).
Colombeau, J. F., "Elementary Introduction to New Generalized Function", North Holland, Amsterdam, 1985.
Colombeau, J. F., "New Generalized Function and Multiplication of Distribution", North Holland, Amsterdam / New York / Oxford, 1984.
El Mfadel, A., Melliani, S., Elomari, M., "Existence results for nonlocal Cauchy problem of nonlinear Caputo type fractional differential equations via topological degree methods". Advances in the Theory of Nonlinear Analysis and its Application. 6(2), 270–279 (2022).
El Mfadel, A., Melliani, S., Elomari, M., "New existence results for nonlinear functional hybrid differential equations involving the Caputo fractional derivative". Results in Nonlinear Analysis. 5(1), 78-86 (2022).
Fattorini, H. O., "Ordinary differential equations in linear topological spaces", II, J. Differential Equations, 6 , 50–70 (1969).
Gorenflo, R, Kilbas, A A, Mainardi, F, Rogosin, S. V., "Mittag-Leffler Functions, Related Topics and Applications" (Springer, New York, 2014).
Gorenflo, R, Mainardi, F., Fractional calculus; Integral an differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics, in: A. Carpinteri, F. Mainardi (Eds.), CISM Lecture notes, Springer Verlag, Wien and New York, 1997, pp. 223–276.
Jenkins, P. F., "Making sense of the chest x-ray: a hands-on guide". New York (NY): Oxford University Press; 2005.
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., "Theory and Applications of Fractional Differential Equations", in: Jan van Mill (Ed.), North-Holland Mathematics Studies, vol. 204, Amsterdam, Netherlands (2006).
Mainardi, F, Paradisi, P., Gorenflo, R., "Probability distributions generated by fractional diffusion equations, in: J. Kertesz, I. Kondor (Eds.), Econophysics: An Emerging Science", Kluwer, Dordrecht, 2000.
Oberguggenberger, M., "Multiplication of Distributions and Applications to Partial Differential Equations", Pitman Research Notes in Mathematics, (1992).
Podlubny, I., "Fractional Differential Equations", Academic Press, San Diego, (1999).
Segal, I., "Non-linear semi-groups", Ann. Math., 78 (1963), 339–364.
Stojanovic, M., "Extension of Colombeau algebra to derivatives of arbitrary order D, 0. Application to ODEs and PDEs with entire and fractional derivatives". 71 (2009) 5458–5475.
Stojanovic, M., "Foundation of the fractional calculus in generalized function algebra". Analysis and Applications, Vol. 10, No. 4 (2012) 439–467.
Travis, C. C., Webb, G. F., "Cosine families and abstract nonlinear second order differential equations", Acta Mathematica Hungarica, 1588–2632, 1978.
Trujillo, J. J., "On best fractional derivative to be applied in fractional modeling. The fractional Fourier transform", in: Proc. FDA08, Ankara, 5–7 November, 2008.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).