On nonnil-finite condcutor rings
Abstract
Let R be a commutative ring with nonzero identity and let $\mathcal{H}= \{R\mid R\text{ is a commutative ring and } Nil(R) \text{ is a divided prime ideal}\\ \text{of } R\}$. If $R\in \mathcal{H}$, then $R$ is called a $\phi$-ring. In this paper, we introduce and investigate new generalizations of nonnil-coherent rings. we introduce and study finite conductor and quasi coherent rings. $R$ is said to be a nonnil-finite conductor ring if $Ra\cap Rb$ and $(0:c)$ are finitely generated ideals of $R$ for all non-nilpotent elements $a,b,c\in R.$ $R$ is said to be a nonnil-quasi coherent ring if $a_1R \cap \cdots \cap a_nR$ and $(0 : c)$ are finitely generated ideals of $R$ for any finite set of non-nilpotent elements $c$ and $a_1, \ldots , a_n$ of $R$. Some basic properties of nonnil-finite conductor $($resp., nonnil-quasi coherent$)$ rings are studied. Further, we study the possible transfer to trivial ring extension and amalgamated algebra along an ideal. Examples illustrating the aims and scopes of our results are given.Downloads
References
B. Alfonsi, Grade non-Noetherien, Comm. Algebra, 9(8), 811–840, (1981).
D. F. Anderson and A. Badawi, On -Dedekind rings and -Krull rings, Houston J. Math., 31(4), 1007–1022, (2005).
D. F. Anderson and A. Badawi, On -Pr¨ufer rings and -Bezout rings, Houston J. Math., 30(2), 331–343, (2004).
D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1), 3–56, (2009).
A. Anebri, N. Mahdou and ¨U. Tekir, Commutative rings and modules that are r-Noetherian, Bull. Korean Math. Soc., 58(5), 1221–1233, (2021).
A. Anebri, N. Mahdou and ¨U. Tekir, On modules satisfying the descending chain condition on r-submodules, Comm. Algebra, 50(1), 383–391, (2022).
A. Anebri, N. Mahdou, and Y. Zahir, On S-finite conductor rings. Khayyam J. Math., 9(1), 116–126, (2023).
K. Bacem and A. Benhissi, Nonnil-coherent rings, Beitr. Algebra Geom., 57(2), 297–305, (2016).
A. Badawi, On divided commutative rings, Comm. Algebra, 27(3), 1465–1474, (1999).
A. Badawi, On nonnil-Noetherian rings, Comm. Algebra, 31(4), 1669-1677, (2003).
M. D’Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, 155–172, (2009).
M. D’Anna, C. A. Finacchiaro, and M. Fontana, Amalgamated algebras along an ideal, Comm. Algebra and Applications, Walter De Gruyter, 241–252, (2009).
M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3), 443–459, (2007).
A. Y. Darani and M. Rahmatinia, On -Schreier rings, J. Korean Math. Soc., 53(5), 1057–1075, (2016).
D. E. Dobbs, Divided rings and going-down, Pacific J. Math., 67(2), 353–363, (1976).
A. El Khalfi, H. Kim and N. Mahdou, On −piecewise Noetherian rings, Comm. Algebra, 49(3), 1324–1337, (2021).
A. El Khalfi, H. Kim and N. Mahdou, Amalgamated algebras issued from -chained rings and -pseudo-valuation rings, Bull. Iranian Math. Soc., 47(5), 1599–1609, (2021).
A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory, a survey, Moroccan J. Algebra Geom. Appl., 1(1), 139–182, (2022).
S. Glaz, Commutative Coherent Rings, Springer-Verlag, Lecture Notes in Mathematics, 1371, (1989).
S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc., 129, 2833–2843, (2000).
J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.
S. Kabbaj, Matlis’ semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan J. Algebra Geom. Appl., 1(1), 1–17, (2021).
S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(1), 3937–3953, (2004).
H. Kim and R. Kumar, A generalization of conducive domains, Bull. Korean Math. Soc., 61(6), 1593-1605, (2024).
H. Kim, N. Mahdou and E. H. Oubouhou, When every ideal is -P-flat, Hacettepe J. Math. Stat., 52(3), 708–720, (2023).
H. Kim, N. Mahdou and E. H. Oubouhou, -rings from a module-theoretic point of view: a survey, Moroccan J. Algebra Geom. Appl., 3(1), 78–114, (2024).
N. Mahdou and E. H. Oubouhou, On -P-flat modules and -von Neumann regular rings, J. Algebra Appl., 23 (09), 2450143, (2024).
N. Mahdou and E. H. Oubouhou, Nonnil-S-coherent rings, Commun. Korean Math. Soc., 39(1), 45–58, (2024).
M. Tamekkante, K. Louartiti and M. Chhiti, Chain conditions in amalgamated algebras along an ideal, Arab. J. Math., 2, 403–408, (2013).
M. Zafrullah, On finite conductor domains, Manuscripta Math., 24, 191–204, (1978).
X. L. Zhang, S. Xingb and W. Qi, Strongly -flat modules, strongly nonnil-injective modules and their homology dimensions, (2022), arXiv preprint arXiv:2211.14681.
W. Zhao, F. Wang and G. Tang, On -von Neumann regular rings, J. Korean Math. Soc., 50(1), 219–229, (2013).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



