FINITE INTEGRAL INVOLVING INCOMPLETE ALEPH-FUNCTIONS, GENERALIZED EXTENDED HURWITZ'S ZETA FUNCTION, INCOMPLETE GAMMA FUNCTION, AND ELLIPTIC INTEGRALS OF THE FIRST KIND
Abstract
In this study, we derive a general finite integral that incorporates the generalized
Hurwitz-Lerch Zeta function of two variables, the incomplete Gamma function,
elliptic integrals of the first kind, and incomplete Aleph-functions. The paper concludes
with a discussion of several corollaries and observations.
Downloads
Download data is not yet available.
References
[1] T.M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
[2] F.Y. Ayant and D. Kumar, A unied study of Fourier series involving the Aleph-function and the
Kampe de Feriet's function, Int. J. Math. Trend. Technol. 35(1) (2016), 40{48.
[3] M.K. Bansal and D. Kumar, On the integral operators pertaining to a family of incomplete I-
functions, AIMS Math. 5(2) (2020), 1247-1259.
[4] M.K. Bansal, D. Kumar, I. Khan, J. Singh and K.S. Nisar, Certain unied integrals associated with
product of M-series and incomplete H-functions, Mathematics 7(12):1191 (2019), 1-11.
[5] M.K. Bansal, D. Kumar, K.S. Nisar and J. Singh, Certain fractional calculus and integral transform
results of incomplete @-functions with applications, Math. Methods Appl. Sci. 43(8) (2020), 5602{
5614.
[6] S. Batra and P. Rai, A further extension of generalized Hurwitz's-Lerch zeta function of two variables,
Int. J. Pure Appl. Math. 119(18) (2018), 1551{1556.
[7] S. Batra and P. Rai, A further generalization of extended Hurwitz's-Lerch zeta function of two
variables, Adv. Stud. Contemp. Math. 30(3) (2020), 391{399.
[8] Y.A. Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas
(1st ed.), Chapman and Hall/CRC, New York, 2008.
[9] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol.
I, McGraw-Hill Book Inc., New York, Toronto and London, 1953.
[10] L. Euler, De progressionibus transcendenti bus, Novi Comment. Acad. Sci. Imp. Petropol. 5 (1729),
61{95.
[11] S.P. Goyal and R.K. Ladha, On the generalization Zeta function and generalized Lambert's function,
Ganita Sandesh 11 (1997), 99{108.
[12] D. Kumar, Generalized fractional dierintegral operators of the Aleph-function of two variables, J.
Chem. Biol. Phys. Sci., Sect. C 6(3) (2016), 1116{1131.
[13] D. Kumar, F.Y. Ayant and M.S. Bajrolia, Improper integrals involving the incomplete Alephfunctions,
Sohag J. Math. 11(2), (2024), 23{27.
[14] D. Kumar, F.Y. Ayant, P. Nirwan and D.L. Suthar, Boros integral involving the generalized multiindex
Mittag-Leer function and incomplete I{functions, Res. Math. 9(1), (2022), 1{7.
[15] D. Kumar, F.Y. Ayant, K.S. Nisar and D.L. Suthar, On fractional q{integral operators involving
the basic analogue of multivariable Aleph-function, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
93(2) (2023), 211{218.
[16] D. Kumar, F.Y. Ayant, A. Singh and P.K. Banerji, Finite integral formula involving Aleph-function
and generalized Mittag-Leer function, Probl. Anal. Issues Anal. 9(27)(1) (2020), 96{109.
[17] D. Kumar, F.Y. Ayant, D.L. Suthar, P. Nirwan and M. Kumari, Boros integral involving the class
of polynomials and incomplete @{functions, Proc. Indian Natl. Sci. Acad. 90(2) (2024), 1{8.
[18] D. Kumar, F.Y. Ayant and F. Ucar, Integral involving Aleph-function and the generalized incomplete
hypergeometric function, TWMS J. App. and Eng. Math. 10(3) (2020), 650{656.
[19] D. Kumar, D. Baleanu, F.Y. Ayant and N. Sudland, On transformation involving basic analogue to
the Aleph-function of two variables, Fractal Fract. 6(2): 71 (2022), 1{8.
[20] D. Kumar and J. Daiya, Fractional calculus pertaining to generalized H-functions, Glob. J. Sci.
Front. Res. F. Math. Decis. Sci. 14(3) (2014), 25{36.
[21] D. Kumar, R.K. Gupta, B.S. Shaktawat and J. Choi, Generalized fractional calculus formulas involving
the product of Aleph-function and Srivastava polynomials, Proc. Jangjeon Math. Soc. 20(4)
(2017), 701{717.
[22] D. Kumar, R.K. Saxena and J. Ram, Finite integral formulas involving Aleph function, Bol. Soc.
Parana. Mat. 36(1) (2018), 177{193.
[23] D.M. Lee, A.K. Rathie, R.K. Parmar and Y.S. Kim, Generalization of extended Beta function,
hypergeometric and con
uent hypergeometric functions, Honam Math. J. 33 (2011), 187{206.
[24] E. Ozergin, M.A. Ozarslan and A. Altin, Extension of Gamma, Beta and hypergeometric functions,
J. Comput. Appl. Math. 235 (16) (2011), 4601{4610.
[25] R.K. Parmar, J. Choi and S.D. Purohit, Further generalization of the extended Hurwitz's-Lerch
Zeta functions, Bol. Soc. Paran. Mat. 37(1) (2019), 177{190.
[26] J. Ram and D. Kumar, Generalized fractional integration of the @ {function, J. Rajasthan Acad.
Phys. Sci. 10(4) (2011), 373{382.
[27] V.P. Saxena, The I-function, Anamaya Publishers, New Delhi, 2008.
[28] L.J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.
[29] H.M. Srivastava, M.A. Chaudhary and R.P. Agarwal, The incomplete Pochhammer symbols and
their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23
(2012), 659{683.
[30] H.M. Srivastava, R.K. Saxena and R.K. Parmar, Some families of the incomplete H-function and
the incomplete H
-functions and associated integrals transforms and operators of fractional calculus
with applications, Russ. J. Math. Phys. 25 (2018), 116{138.
[31] N. Sudland, N.B. Baumann and T.F. Nonnenmacher, Open problem: who knows about the Alephfunctions?,
Fract. Calc. Appl. Anal. 1(4) (1998), 401{402.
[32] D.L. Suthar, S. Agarwal and D. Kumar, Certain integrals involving the product of Gaussian hypergeometric
function and Aleph function, Honam Math. J. 41 (1) (2019), 1{17.
[33] E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge [Eng.], The University
Press, The Macmillan Company, New York, 1943.
[2] F.Y. Ayant and D. Kumar, A unied study of Fourier series involving the Aleph-function and the
Kampe de Feriet's function, Int. J. Math. Trend. Technol. 35(1) (2016), 40{48.
[3] M.K. Bansal and D. Kumar, On the integral operators pertaining to a family of incomplete I-
functions, AIMS Math. 5(2) (2020), 1247-1259.
[4] M.K. Bansal, D. Kumar, I. Khan, J. Singh and K.S. Nisar, Certain unied integrals associated with
product of M-series and incomplete H-functions, Mathematics 7(12):1191 (2019), 1-11.
[5] M.K. Bansal, D. Kumar, K.S. Nisar and J. Singh, Certain fractional calculus and integral transform
results of incomplete @-functions with applications, Math. Methods Appl. Sci. 43(8) (2020), 5602{
5614.
[6] S. Batra and P. Rai, A further extension of generalized Hurwitz's-Lerch zeta function of two variables,
Int. J. Pure Appl. Math. 119(18) (2018), 1551{1556.
[7] S. Batra and P. Rai, A further generalization of extended Hurwitz's-Lerch zeta function of two
variables, Adv. Stud. Contemp. Math. 30(3) (2020), 391{399.
[8] Y.A. Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas
(1st ed.), Chapman and Hall/CRC, New York, 2008.
[9] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol.
I, McGraw-Hill Book Inc., New York, Toronto and London, 1953.
[10] L. Euler, De progressionibus transcendenti bus, Novi Comment. Acad. Sci. Imp. Petropol. 5 (1729),
61{95.
[11] S.P. Goyal and R.K. Ladha, On the generalization Zeta function and generalized Lambert's function,
Ganita Sandesh 11 (1997), 99{108.
[12] D. Kumar, Generalized fractional dierintegral operators of the Aleph-function of two variables, J.
Chem. Biol. Phys. Sci., Sect. C 6(3) (2016), 1116{1131.
[13] D. Kumar, F.Y. Ayant and M.S. Bajrolia, Improper integrals involving the incomplete Alephfunctions,
Sohag J. Math. 11(2), (2024), 23{27.
[14] D. Kumar, F.Y. Ayant, P. Nirwan and D.L. Suthar, Boros integral involving the generalized multiindex
Mittag-Leer function and incomplete I{functions, Res. Math. 9(1), (2022), 1{7.
[15] D. Kumar, F.Y. Ayant, K.S. Nisar and D.L. Suthar, On fractional q{integral operators involving
the basic analogue of multivariable Aleph-function, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
93(2) (2023), 211{218.
[16] D. Kumar, F.Y. Ayant, A. Singh and P.K. Banerji, Finite integral formula involving Aleph-function
and generalized Mittag-Leer function, Probl. Anal. Issues Anal. 9(27)(1) (2020), 96{109.
[17] D. Kumar, F.Y. Ayant, D.L. Suthar, P. Nirwan and M. Kumari, Boros integral involving the class
of polynomials and incomplete @{functions, Proc. Indian Natl. Sci. Acad. 90(2) (2024), 1{8.
[18] D. Kumar, F.Y. Ayant and F. Ucar, Integral involving Aleph-function and the generalized incomplete
hypergeometric function, TWMS J. App. and Eng. Math. 10(3) (2020), 650{656.
[19] D. Kumar, D. Baleanu, F.Y. Ayant and N. Sudland, On transformation involving basic analogue to
the Aleph-function of two variables, Fractal Fract. 6(2): 71 (2022), 1{8.
[20] D. Kumar and J. Daiya, Fractional calculus pertaining to generalized H-functions, Glob. J. Sci.
Front. Res. F. Math. Decis. Sci. 14(3) (2014), 25{36.
[21] D. Kumar, R.K. Gupta, B.S. Shaktawat and J. Choi, Generalized fractional calculus formulas involving
the product of Aleph-function and Srivastava polynomials, Proc. Jangjeon Math. Soc. 20(4)
(2017), 701{717.
[22] D. Kumar, R.K. Saxena and J. Ram, Finite integral formulas involving Aleph function, Bol. Soc.
Parana. Mat. 36(1) (2018), 177{193.
[23] D.M. Lee, A.K. Rathie, R.K. Parmar and Y.S. Kim, Generalization of extended Beta function,
hypergeometric and con
uent hypergeometric functions, Honam Math. J. 33 (2011), 187{206.
[24] E. Ozergin, M.A. Ozarslan and A. Altin, Extension of Gamma, Beta and hypergeometric functions,
J. Comput. Appl. Math. 235 (16) (2011), 4601{4610.
[25] R.K. Parmar, J. Choi and S.D. Purohit, Further generalization of the extended Hurwitz's-Lerch
Zeta functions, Bol. Soc. Paran. Mat. 37(1) (2019), 177{190.
[26] J. Ram and D. Kumar, Generalized fractional integration of the @ {function, J. Rajasthan Acad.
Phys. Sci. 10(4) (2011), 373{382.
[27] V.P. Saxena, The I-function, Anamaya Publishers, New Delhi, 2008.
[28] L.J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.
[29] H.M. Srivastava, M.A. Chaudhary and R.P. Agarwal, The incomplete Pochhammer symbols and
their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23
(2012), 659{683.
[30] H.M. Srivastava, R.K. Saxena and R.K. Parmar, Some families of the incomplete H-function and
the incomplete H
-functions and associated integrals transforms and operators of fractional calculus
with applications, Russ. J. Math. Phys. 25 (2018), 116{138.
[31] N. Sudland, N.B. Baumann and T.F. Nonnenmacher, Open problem: who knows about the Alephfunctions?,
Fract. Calc. Appl. Anal. 1(4) (1998), 401{402.
[32] D.L. Suthar, S. Agarwal and D. Kumar, Certain integrals involving the product of Gaussian hypergeometric
function and Aleph function, Honam Math. J. 41 (1) (2019), 1{17.
[33] E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge [Eng.], The University
Press, The Macmillan Company, New York, 1943.
Published
2025-12-29
Section
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



