Zalcmann, Generalized Zalcmann and Krushkal inequalities associated with a new subclass of analytic functions
Resumo
In this article we investigate the sharp bounds of Zalcmann, generalized Zalcmann and Krushkal inequalities for a new subclass of analytic functions of the form $ f(z)=z +\sum_{n=2}^{\infty} a_n z^n$ on the unit disk $\Delta=\{z \in
\mathbb{C}: |z|<1\}.$
Downloads
Referências
J.E. Brown, A. Tsao., On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191 (3), (1986), 467–474.
P. L. Duren.,Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, (1983).
S. L. Krushkal.,Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., (2010), vol. 17, pp. 663–681
S. L. Krushkal.,A short geometric proof of the Zalcman and Bieberbach conjectures, (2014)
L. Li, S. Ponnusamy, On the generalized Zalcman functional in the close-to-convex family, Proc. Amer. Math. Soc., 145,(2017), 833–846
L. Li, S. Ponnusamy, J. Qiao., Generalized Zalcman conjecture for convex functions of order α, Acta Math. Hungar. 150 (1), (2016), 234–246
W.C. Ma.,Generalized Zalcman conjecture for star - like and typically real functions, J. Math. Anal. Appl, (1999), Volume 234(1), 328 - 339
W.C. Ma.,The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104 (3), (1988), 741–744
S. Ozaki, M. Nunokawa., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc, (1972), Volume 33(2), 392 - 394
V. Ravichandran, S. Verma,Generalized Zalcman conjecture for some classes of analytic functions, J. Math. Anal. Appl, (2017), Volume 450(1), 592 - 605
D. K. Thomas, N. Tuneski, A. Vasudevarao.,Univalent functions, A primer, De Gruyter Studies in Mathematics, De Gruyter, Berlin, (2018)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).