On Six consecutive pairs of Lucas and Fibonacci-type $p$ entities connected to Chebyshev polynomials

Abstract

Let p be a chosen positive integer parameter. Let Np = (p+1)2 +1 and Mp = 2(p+1)2 +1. We denote the p-entities by {(λ6n+k, θ6n+k) : k = 0, 1, 2, 3, 4, 5; n = 0, 1, 2, 3, · · · }. When p = 1 they are equal to (L6n+k, F6n+k) where Ln and Fn are the well known Lucas and Fibonacci numbers. Also, if x = λ6n+k and y = θ6n+k, they satisfy generalised Pell’s equation x2 − Npy2 = ±(p + 1)2. In the present paper, it will be shown that λ6n+k and θ6n+k are expressible in terms of Tn(Mp) and Un−1(Mp) where, Tn(x) and Un−1(x) are well known Chebyshev polynomials of the first and the second kind. Some interesting combinatorial identities are also derived for each p− entities.

Downloads

Download data is not yet available.

References

Abd-Elhameed, W. M. and Zeyada, N. A., New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure Appl. Math., 49(3), 527–537, (2018).

Adegoke, K., Frontczak, R. and Goy, T., Some notes on a Fibonacci-Lucas identity, Proc. Jangjeon Math. Soc., 27(4), 859–869, (2024).

Barbeau, E. J., Pell’s equation, Problem Books in Mathematics, Springer, New York, (2003).

Benjamin, A. T. and Quinn, J. J., Fibonacci and Lucas identities through colored tilings, Util. Math., 56, 137–142, (1999).

Bhatnagar, G., Analogues of a Fibonacci-Lucas identity, Fibonacci Q., 54(2), 166–171, (2016).

Dhanya, P., Nagaraja, K. M. and Siva Kota Reddy, P., A Note on D’Ocagne’s Identity on Generalized Fibonacci and Lucas numbers, Palest. J. Math., 10(2), 751–755, (2021).

Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete mathematics: a foundation for computer science, Second Edition, Addison-Wesley Publishing Group, Amsterdam, (1994).

Honnegowda C. K., Studies on Sum Aspects of Combinatorial Number Theory, Ph.D. Thesis, University of Mysore, Mysore, (2018).

Honsberger, R., Mathematical gems III, Dolciani Math. Expo., Volume 9, The Mathematical Association of America, Washington, DC, (1985).

Jacobson, M. and Williams, H., Solving the Pell Equation, CMS Books in Mathematics. Springer, Berlin, (2010).

Karadeniz Gözeri, G, On Pell, Pell-Lucas, and balancing numbers, J. Inequal. Appl., Volume 2016, Paper No. 3, 16 Pages, (2018).

Koshy, T., Fibonacci and Lucas numbers with applications, Volume I, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York, Wiley, (2001).

Lam–Estrada, P., Maldonado–Ramírez, M. R., López–Bonilla, J. L., Jarquín–Zárate, F., Rajendra, R. and Siva Kota Reddy, P., The Sequences of Fibonacci and Lucas for Real Quadratic Number Fields, Bol. Soc. Parana. Mat. (3), 43, Article Id: 68136, 15 Pages, (2025).

Mason, J. C. and Handscomb, D. C., Chebyshev Polynomials, Chapman and Hall/CRC, New York, (2002).

Niven, I., Zuckerman, H. S. and Montgomery, H. L., An Introduction to the Theory of Numbers, 5th Edition, John Wiley & Sons, Inc., (1991).

Rangarajan, R., Mukund, R. and Honnegowda, C. K. and Mayura, R., On combinatorial identities of Pell-Chebyshev twin number pairs, Palest. J. Math., 11(2), 308–317, (2022).

Rangaswamy, Studies on Brahmagupta polynomials and continued fractions with some interconnections, Ph.D. Thesis, University of Mysore, Mysore, (2007).

Ribenboim, P., My numbers, my friends: Popular lectures on number theory, Springer, New York, (2000).

Robbins, N., Beginning number theory, Dubuque, IA: Wm. C. Brown Publishers, (1993).

R. Rangarajan, R., Goutham, C. and Siva Kota Reddy, P., On Three Pairs of Lucas and Fibonacci-type Combinatorial p-entities, Bol. Soc. Parana. Mat. (3), accepted for publication.

Suryanarayan, E. R., The Brahmagupta Polynomials, The Fibonacci Quarterly, 34, 30–39, (1996).

Vajda S., Fibonacci and Lucas Numbers and Golden Section: Theory and Applications , Ellis-Horwood, New York, (1989).

Published
2025-07-12
Section
Research Articles