On Rational Contractions of Geraghty-Fisher Type in Controlled Fuzzy Metric Spaces with Application
Abstract
This paper presents a novel rational contraction condition of the Geraghty-Fisher type within the framework of controlled fuzzy metric spaces, thereby extending and strengthening existing fixed point results. The proposed contraction condition provides a more general and effective approach for establishing fixed points in fuzzy environments. To validate the theoretical findings, an illustrative example is included along with a graphical representation demonstrating convergence. Moreover, the applicability of the theorem is illustrated by proving the existence and uniqueness of solutions for a second-order differential equation associated with a two-point boundary value problem in electric circuit theory. The results obtained not only generalize several known fixed point theorems but also offer new mathematical tools applicable to real-world problems in engineering and applied sciences. This work contributes to the advancement of fixed point theory and opens avenues for further research in fuzzy metric spaces and their applications.
Downloads
References
Afshari H., Atapour M. and Aydi H., A common fixed point for weak ϕ - contractions on b-metric spaces, Fixed Point Theory, 13(2012), 337 − 346. URL: http : //www.math.ubbcluj.ro/ nodeacj/sfptcj.html.
Afshari H., Atapour M. and Aydi H., Generalized α − ψ−Geraghty multivalued mappings on b-metric spaces endowed with a graph, J. Appl. Eng. Math., 7(2017), 248 − 260.
Afshari H., Atapour M. and Aydi H., Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces, Discret. Dyn. Nat. Soc., (2018), 4745764. https://doi.org/10.1155/2018/4745764.
Alharbi N., Aydi H., Felhi A., Ozel C. and Sahmim S., α− Contractive mappings on rectangular b-metric spaces and an application to integral equations, J. Math. Anal., 9(2018), 47 − 60.
Bakhtin I. A., The contraction mapping principle in almost metric spaces, Funct. Anal., 30(1989), 26 − 37.
Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundam. Math., 3(1922), 133 − 181. URL: http : //matwbn.icm.edu.pl/ksiazki/or/or2/or215.pdf.
Boriceanu M., Petrusel A. and Rus I. A., Fixed point theorems for some multivalued generalized contraction in b-metric spaces, Int. J. Math. Statistics, 6(2010), 65 − 76.
Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra., 1(1993), 5 − 11. URL: http://dml.cz/dmlcz/120469.
Durdana Lateef, Fisher type fixed point results in controlled metric spaces, J.Math. Computer Sci., 20(2020), 234−240. DOI : 10.22436/jmcs.020.03.06.
George A. and Veeramani P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395 − 399. https://doi.org/10.1016/0165−0114(94)90162−7.
Grabiec M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385 − 389. https://doi.org/10.1016/0165−0114(88)90064−4.
Geraghty M. A., On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604 − 608.
Hussain N., Salimi P. and Parvaneh V., Fixed point results for various contractions in parametric and fuzzy b-metric spaces, J. Nonlinear Sci. Appl., 8(5) (2015) 719 - 739. https://doi.org/10.22436/jnsa.008.05.24.
Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi and Manuel De la Sen, On fixed point results in controlled metric spaces, Journal of Function Spaces, (2020), 2108167. DOI : 10.1155/2020/2108167.
Kim J. K., Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces, J. Computational Anal. Appl., 22(2017), 336 − 345.
Kramosil I. and Michalek J., Fuzzy metric and statistical metric spaces, Kybernetika, 11(1975), 326 − 334. URL: http://dml.cz/dmlcz/125556.
Mehmood F., Ali R., Ionescu C. and Kamran T., Extended fuzzy b-metric spaces, J. Math. Anal., 8(2017), 124 − 131. URL: http://www.ilirias.com.
Melliani S. and Moussaoui A., Fixed point theorem using a new class of fuzzy contractive mappings, Journal of Universal Mathematics, 1(2)(2018), 148 − 154.
Mihet D., Fuzzy ψ-contractive mappings in non-archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159(6)(2008), 739 − 744. https://doi.org/10.1016/j.f ss.2007.07.006.
Mlaiki N., Aydi H., Souayah N. and Abdeljawad T., Controlled metric-type spaces and the related contraction principle, Mathematics Molecular Diversity Preservation International, 6(2018), 1 − 7. https://doi.org/10.3390/math6100194.
Nasr Saleh H., Imdad M., Khan I. and Hasanuzzaman M., Fuzzy Θf - contractive mappings and their fixed points with applications, Journal of Intelligent and Fuzzy Systems,(2020), 1 − 10. https://doi.org/10.3233/jifs − 200319.
N˘ad˘aban S., Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11(2016), 273 − 281. https://doi.org/10.15837/ijccc.2016.2.2443.
Sezen M¨uzeyyen Sangurlu, Controlled fuzzy metric spaces and some related fixed point results, Numerical Partial Differential Equations, (2020), 1 − 11. https://doi.org/10.1002/num.22541.
Shukla S., Gopal D. and Sintunavarat W., A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets and Systems 350(2018), 85 − 94. https://doi.org/10.1016/j.f ss.2018.02.010.
Tomar A. and Sharma R., Some coincidence and common fixed point theorems concerning F-contraction and applications, Journal of the International Mathematical Virtual Institute, 8(2018), 181−198. https://doi.org/10.7251/JIMV I1801181T.
Wardowski D., Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 222(2013), 108 − 114. https://doi.org/10.1016/j.fss.2013.01.012.
Zadeh L. A., Fuzzy sets, Inform and Control, 8(1965), 338 − 353. https://doi.org/10.1016/S0019−9958(65)90241−X.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



