Linear and non-linear semigroups and applications
Abstract
The theory of semigroups of operators is undoubtedly one of the most powerful and elegant tools in modern functional analysis for the study of evolution equations. From the classical heat diffusion to complex wave propagation phenomena and quantum mechanics, the abstract language of semigroups allows us to unify diverse problems under a common framework, providing robust methods for establishing existence, uniqueness, and asymptotic behavior of solutions. This book, Linear and Nonlinear Semigroups and Applications, is the result of years of teaching and research at the State University of Maringá. It has been conceived to serve both as a textbook for graduate students in Mathematics and as a reference for researchers interested in the analysis of partial differential equations. The text is structured to guide the reader from the foundations to the frontiers of the theory. We begin with a review of differential and integral calculus in Banach spaces, setting the stage for the theory of C0-semigroups of linear operators. Here, the classical theorems of Hille-Yosida and Lumer-Phillips are presented not just as abstract results, but as operational tools essential for solving linear Evolution problems. However, nature is inherently nonlinear. A distinctive feature of this volume is the substantial treatment dedicated to nonlinear analysis. We introduce the theory of monotone and accretive operators, multivalued mappings, and the crucial Crandall-Liggett Theorem, which generalizes the generation of semigroups to the nonlinear setting. This transition is handled with care, highlighting the geometric and analytic subtleties that arise when linearity is abandoned. Throughout the book, the abstract theory is constantly motivated by and applied to concrete problems. We explore in detail the heat equation, the wave equation with various types of damping (frictional, viscoelastic, and boundary damping), and the Schrödinger equation. Special attention is given to the regularity of solutions and to the concept of weak and generalized solutions, bridging the gap between abstract functional analysis and applied mathematics. We assume the reader has a background in basic functional analysis and Lebesgue integration theory. Our goal is that, by the end of this journey, the reader will not only understand the "how" and "why" of semigroup theory but will also be equipped to apply these powerful techniques to their own research problems. We are grateful to our colleagues and students whose questions and feedback over the years have helped shape this material. We hope this book serves as a solid foundation for those venturing into the vast and dynamic field of evolution equations.
Downloads
References
Adams, R. A., Sobolev Spaces. Academic Press, 1975.
Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I. Comm. Pure Appl. Math. 12 (1959), 623–727.
Asplund, E., Average Norms. Isr. J. Math. 5 (1967), 227–233.
Aubin, J. P., Mathematical Methods of Game and Economic Theory. North-Holland, 1979.
Ball, J. M., Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977), 370–373.
Balakrishnan, A., Applied Functional Analysis. Springer, 1976.
Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, 1976.
Bachman, G.; Narici, L., Functional Analysis. Academic Press, New York, 1972.
Bénilan, P., Solutions faibles d’équations d’évolution dans un espace réflexif. Séminaire Deny sur les semi-groupes non linéaires, Orsay (1970–1971).
Bénilan, P.; Brézis, H., Solutions faibles d’équations d’évolution dans les espaces de Hilbert. Ann. Inst. Fourier 22 (1972), 311–329.
Bénilan, P.; Brézis, H.; Crandall, M. G., A semilinear equation in L1(RN). Ann. Scuola Norm. Sup. Pisa 2 (1975), 523–555.
Bourbaki, N., Topologie Générale, Livre III, Ch. 1, 2 et 9. Herman, Paris, 1953–1961.
Bourbaki, N., Espaces Vectoriels Topologiques, Livre V, Ch. 1–5. Herman, Paris, 1953–1961.
Brézis, H., Analyse Fonctionnelle, Théorie et Applications. Masson, 1987.
Brézis, H., Nonlinear Evolution Equations. Autumn Course on Semigroups, Theory and Applications. International Centre for Theoretical Physics, Trieste, 1984.
Brézis, H.; Browder, F., Partial differential equations in the 20th century. Adv. Math. 135 (1998), 76–144.
Brézis, H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam, 1973.
Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.
Brézis, H.; Crandall, M. G.; Pazy, A., Perturbations of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math. 23 (1970), 123–144.
Caffarelli, L. A.; Salsa, A., A Geometric Approach to Free Boundary Problems. American Mathematical Society, 2005.
Calvert, B., Maximal accretive is not m-accretive. Boll. Un. Mat. Ital. 3 (1970), 1042–1044.
Cavalcanti, M. M.; Domingos Cavalcanti, V. N., Introdução à Teoria das Distribuições e aos Espaços de Sobolev. Eduem, Maringá, 2009.
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Komornik, V., Introdução à Análise Funcional. Eduem, Maringá, 2011.
Cazenave, T.; Haraux, A., An Introduction to Semilinear Evolution Equations. Oxford University Press, 1998.
Chernoff, P., Note on product formulas for operator semigroups. J. Funct. Anal. 2 (1968), 238–242.
Choquet, G., Lectures On Analysis, Volume I: Integration And Topological Vector Spaces. W. A. Benjamin, 1969. ISBN: 0-8053-6955-4.
Choquet, G., Lectures On Analysis, Volume II: Representation Theory. W. A. Benjamin, 1969. ISBN: 0-8053-6957-0.
Choquet, G., Lectures On Analysis, Volume III: Infinite Dimensional Measures And Problem Solutions. W. A. Benjamin, 1969. ISBN: 0-8053-6959-7.
Coifman, R.; Meyer, Y., Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge University Press, 1997.
Croke, C. B.; Lasiecka, I.; Uhlmann, G.; Vogelius, M.; eds, Geometric Methods in Inverse Problems and PDE Control. Springer, 2004.
Crandall, M. G., Differential equations on convex sets. J. math. Soc. Japan, 22 (1970), 396–414.
Dacorogna, B., Weak continuity and weak lower semicontinuity of nonlinear functionals. Lec. Notes in Math, No992, Springer-Verlag, 1982.
Dieudonné,J., Foundations of Modern Analysis. Academis Press, 1960.
Dieudonné, J., Recent Developments in the Theory of Locally Convex Vector Spaces. Bull. Amer. Math. Soc, 59 (1953), 495–512.
Dieudonné, J.; Schwartz, L., La Dualité des Espaces F et LF. Ann. de L’Inst. Fourier I, (1949), 61–101.
Diestel, J., Geometry of Banach Spaces-Selected Topics. Lectures Notes in Math., 488, Springer Verlag (1975).
Dautray, R.; Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology(6 volumes), Springer, 1988.
Duvaut, G.; Lions,J.L., Inequalities in Mechanics and Phisics. Springer Verlag, New York, 1976.
DiBenedetto, E., Partial Differential Equations (2nd ed.), Birkhäuser, 2009.
Evans, L. C., Weak convergence methods for nonlinear partial differential equations. Regional Conference Series in Mathematics, No 74, AMS, 1990.
Edwards,R., Functional Analysis, Holt-Rinehart-Winston, 1965.
Ekeland, I., Convexity Methods in Hamiltonian mechanics, Springer, 1990.
Evans, L. C., Partial Differential Equations, American Mathematical Society, 1998.
Fernandez, C. S.; Bernardes Jr, N.C., Introdução às Funções de uma Variável Complexa, 2a edição, Coleção Textos Universitários, SBM, 2008.
Friedman,A., [1] Partial Differential Equations of Parabolic Type, Prentice Hall, 1964, [2] Partial Differential Equations, Holt-Rinehart-Winston, 1969, [3] Foundations of Modern Analysis, HoltRinehart-Winston, 1970, [4] Variational Principles and Free Boundary Problems, Wiley, 1982.
Goldstein, J., Semigroups of Operators and Applications, Oxford University Press, 1985.
Gomes, A. M., Semigrupos Não Lineares e Equações Diferenciais nos Espaços de Banach. Textos Matemáticos do IM-UFRJ, UFRJ, 2003.
Gilbert, R. P.; Shi, P.; Shillor, M., A quasistatic contact problem in linear thermoelasticity. Rendiconti di mat., 10 (1990), 785–808.
Granas, A.; Dugundji J., Fixed Point Theory, Springer, 2003.
Grisvard, P., Équations différentielles abstraites, Ann. Sci. ENS, 2 (1969), 311–395.
Hille, E.E., Methods in Classical and Functional Analysis, Addison-Wesley, 1972.
Hörmander,L., [1] Linear Partial Differential Operators, Springer, 1963, [2] The Analysis of Linear Partial Differenetial Operators, (4 volumes), Springer, 1983-1985, [3] Notions of Convexity, Birkhäuser, 1994.
Horváth,J., Topological Vector Spaces and Distributions, Vol. I. Adilson-Wesley, reading, Massachusetts, 1966.
Kato, T., Perturbation Theory for Linear Operators, Springer, 1976.
Kinderlehrer, D.; Stampacchia,G., An Introduction to Variational Inequalities and Their Applications, Academic Press, 1980.
Kim, J. U., A boundary thin obstacle problem for a wave equation. Commun. in Partial Differential Equations, 14 (8-9), 1011–1026, 1989.
Klainerman, S., Introduction to Analysis, Lecture Notes, Princeton University, 2008.
Kolmogorov, A. N.; Fomin, S. V., Elementos de la teoria de funcionales y del Analysis Funcional. Editorial MIR - Moscow, 1978.
Komornik, V., Exact controllability and stabilization. The multiplier method. RAM: Research in Applied Mathematics. Masson, Paris; John Wiley and Sons, Ltd., Chichester, 1994. viii+156 pp. ISBN: 2-225-84612-X.
Kreyszig, E., Introductory Functional Analysis With Applications. John Wiley and Sons, Inc., Canada, 1989.
Lima, E. L., Curso de Análise, volume 2. IMPA, CNPq, PROJETO EUCLIDES - Rio de Janeiro, 2014.
Lima, E. L., Espaços Métricos. IMPA, CNPq, PROJETO EUCLIDES - Rio de Janeiro, 1983.
Lions, J. L., Contrôlabilité exacte perturbations et stabilisation de systèmes distribués. Collection RMA, Masson Paris (tome 1), 1988.
Lions, J. L., [1] Problèmes aux limites dans les équations aux dérivées partielles, Presses de l’Université de Montreal, 1965, [2] Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971, [3] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier Villars, 1969.
Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications (3 volumes), Springer, 1972.
Liu, Z.Y.; Renardy, M., A note on the equations of thermoelastic plate. Appl. Math. Lett., Vol. 8 (1995), N 3, pp. 1–6.
Magenes,E., Topics in parabolic equations: some typical free boundary problems, in Boundary Value Problems for Linear Evolution Partial Differential Equations. (Garnir, H. G., ed.), Reidel, 1977.
Maz’ja, V. G., Sobolev Spaces, Springer, 1985.
Miranda, M. M., Traço para o dual dos espaços de Sobolev, Bol. Soc. Paran. Matemática (2ª série) 11(2) (1990), p.131–157.
Miyadera, I.; Oharu, S., Approximation of semigroups of nonlinear operators. Tohoku Math. J. 22 (1970), 24–47.
Nachbin, L., Lecture on the Theory of Distributions, Lectures Notes Rochester (1963) e Textos de Matemática, Recife (1965).
Okazawa, N.; Yokota, Y., Monotonicity Method Applied to the Complex Ginzburg-Landau and Related Equations. J. Math. Anal. Appl. 267 no. 2 (2002), 247–263.
Raviart, P. A.; Thomas, J. M., Introduction à l’Analyse Numérique des équations aux Dérivées Partielles, Masson, Paris, 1983.
Rockafeller, R. T., Characterization of the subdifferential of convex functions. Pacific J. Math., 17 (1966), pp 497–510.
Ruiz,A., Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl., 71 (1992), p. 455–467.
Shi, P.; Shillor, M., Existence of a solution to the n-dimensional problem of thermoelastic contact. Commun. in Partial Diff. Equations, 17(9-10), 1597–1618, 1992.
Shi, P.; Shillor, M., Uniqueness and stability of the solution to a thermoelastic contact problem. Euro. J. Appl. Math., 1 (1990), 371–387.
Shi, P.; Shillor, M., A quasistatic contact problem in thermoelasticity with a radiation condition for the temperature. J. Math. Anal. Appl., 172, No 1 (1993), 147–165.
Shi,P.; Shillor, M.; Zou, X. L., Numerical solution to the one dimensional problems of thermoelastic contact. Comput. Math. Appl., 22(10), 65-78, 1991.
Temam, R., Navier-Stokes Equations: Theory and numerical analysis. North-Holland, 1979.
Rudin, W., Principles of Mathematical Analysis. McGRAW-HILL International Book Company, pp 1-339, 1976.
Riesz, F.; Nagy, B. S., Functional Analysis. Ungar, New York, 1955.
Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
Pazy, A., Semigroups of nonlinear contractions and their asymptotic behavior. - Nonlinear Analysis and Mechanics: Heriot - Watt Symposium Vol. III. R. J. Knops (editor) Pitman Research Notes in Math. 30. London, 1978.
Schwartz, L., Théorie das Distributions, Tome I et II. Actualites Scientifiques et Industrielles 1091, Herman, Paris (1957).
Schwartz,J. T., Nonlinear Functional Analysis, Gordon Breach, 1969.
Showalter, R. E., Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, American Mathematical Society, United States of America, 1997.
Strauss,W., Partial Differential Equations: An Introduction, Wiley, 1992.
Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1990.
Treves, F.; Figueiredo, D. G., Espaços Vetoriais Topológicos e Distribuições. Notas de Matemática no.41, Rio de Janeiro, 1965.
Yosida, K., Functional Analysis, Die Grundlehrender Mathematishen Wissenschaften, Bd. 123, Springer-Verlag, Berlin, 1965.
Zeidler, E., Nonlinear Functional Analysis and Its Applications, Springer, 1988.
Copyright (c) 2026 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



