Statistical convergence of double sequences on probabilistic normed spaces defined by $[ V, \lambda, \mu ]$-summability

  • Pankaj Kumar Thapar University
  • S. S. Bhatia Thapar University
  • Vijay Kumar HCTM Technical Campus

Resumen

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Pankaj Kumar, Thapar University

School of Mathematics and Computer Application

Asstt. Prof.

Department of Mathematics.

S. S. Bhatia, Thapar University

School of Mathematics and Computer Application

Vijay Kumar, HCTM Technical Campus

Department of Mathematics

Citas

C.Alsina, B.Schweizer and A.Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46(1993), 91-98.

C.Alsina, B.Schweizer and A.Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208(1997), 446-452.

A.Asadollah and K.Nourouzi, Convex sets in probabilistic normed spaces, Chaos, Solitons and Fractals, 36(2)(2008), 322-328.

G.Constantin and I.Istratescu, Elements of Probabilistic Analysis with applications, Springer, Kluwer (1989).

H.Fast, Surla convergence statistique, colloq. Math., 2(1951), 241-244.

M.J.Frank and B.Schweizer, On the duality of generalized infimal and supremal convolutions, Rend. Mat., 12(6)(1979), 1-23.

J.A.Fridy, On statistical convergence, Analysis, 5(4)(1985), 301-313.

S.Karakus, Statistical convergence on probabilistic normed spaces, Mathematical Communications, 12(2007), 11Ű23.

S.Karakus and K.Demirci, Statistical convergence of double sequences on probabilistic normed spaces, Inter J. Math. Math. Sci., (2007), doi:10.1155/2007/14737

V.Kumar and M.Mursaleen, On (λ, µ)-statistiscal convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2)(2011), 109-120.

B.Lafuerza-Guillén, J.A.Rodríguez-Lallena and C.Sempi, Some classes of probabilistic normed spaces, Rend. Mat., 17(1997), 237-252.

K.Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28(1942), 535-537.

S.A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical convergence through de la Vallée-Poussin mean in locally solid Riesz spaces, Adv. Difference Equ., 2013, 2013:66, doi:10.1186/1687-1847-2013-66.

F.Moricz, Statistical convergence of multiple sequences, Arch. Math., 81(2003), 82-89.

M.Mursaleen, λ-statistical convergence, Math. Slovaca, 50(1)(2000), 111-115.

M.Mursaleen and H.H.E.Osama, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223-231.

M. Mursaleen and S.A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41(2009), 2414-2421.

M. Mursaleen, C. Çakan, S.A. Mohiuddine and E. Savas, Generalized statistical convergence and statitical core of double sequences, Acta Math. Sinica, 26(11)(2010), 2131-2144.

M. Mursaleen and S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(64)(4) (2010), 359-371.

M. Mursaleen and Q.M. Danish Lohani, Statistical limit superior and limit inferior in probabilistic normed spaces, Filomat, 25(3) (2011), 55-67.

T.Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.

I.J.Schoenberg, The integrability of certain function and related summability methods, Amer. Math. Monthly, 66(1959), 361-375.

B.Schweizer and A.Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 314-344.

B.Schweizer and A.Sklar, Probabilistic Metric Spaces, 2nd ed., Dover Publication, Mineola, NY (2005).

A.N.Sˇerstnev, Random normed spaces, Problems of completeness, Kazan Gos. Univ. Ucen. Zap., 122(1962), 3-20.

B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34(3) (2003), 231-237.

B.C. Tripathy and B.Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sinica(Eng. Ser.), 24(5)(2008), 737-742.

B.C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slovaca, 59(6)(2009), 767-776.

B.C. Tripathy and P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1)(2011), 21-27.

B.C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Math. Scientia, 31B(1)(2011), 134-140.

B.C. Tripathy and B. Sarma, On I-convergent double sequences of fuzzy real numbers, Kyungpook Math. Journal, 52(2)(2012), 189-200.

Publicado
2014-07-03
Sección
Research Articles