Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method
Resumen
In this paper, we will use the functional variable method to construct exact solutions of some nonlinear systems of partial differential equations, including, the (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation, the WhithamBroer-Kaup-Like systems and the Kaup-Boussinesq system. This approach can also be applied to other nonlinear systems of partial differential equations which can be converted to a second-order ordinary differential equation through the travelling wave transformation.Descargas
Citas
Taghizadeh, N., Mirzazadeh, M., Paghaleh, A. S. and Vahidi, J., Exact solutions of nonlinear evolution equations by using the modified simple equation method, ASEJ. 3 321-325, (2012).
Zhang, S. and Xia, T.C., A further improved extended Fan sub-equation method and its application to the (3+1)-dimensional Kadomstev-Petviashvili equation, Phys. Lett. A. 356 119-123, (2006).
Yusufoglu, E. and Bekir, A., Solitons and periodic solutions of coupled nonlinear evolution equations by using the sineUcosine method, Int. J. Comput. Math. 83 915-924, (2006).
Wang, D. and Zhang, H. Q., Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation, Chaos, Solitons and Fractals. 25 601-610, (2005).
Zhang, S. and Xia, T. C., A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Phys. Lett. A. 363 356-360, (2007).
Zerarka, A., Ouamane, S. and Attaf, A., On the functional variable method for finding exact solutions to a class of wave equations, Appl. Math. Comput. 217 2897-2904, (2010).
Zerarka, A. and Ouamane, S., Application of the functional variable method to a class of nonlinear wave equations, World J. Model. Simul. 6 150-160, (2010).
Zayed,E. M., Hoda Ibrahim, S. A., Simos, T. E., Psihoyios, G., Tsitouras, C. and Anastassi, Z, The functional variable method and its applications for finding the exact solutions of nonlinear PDEs in mathematical physics, AIP Conference Proceedings-American Institute of Physics. 1479, 2049-2053, (2012).
Aminikhah, H., Refahi Sheikhani, A. and Rezazadeh, H., Functional Variable Method for Solving the Generalized Reaction Duffing Model and the Perturbed Boussinesq Equation, Adv. Model. Optim. 17 55-65, (2015).
Fan, E.G., Hon, Y.C., Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in (2+1)-dimensions, Phys. Rev. E. 78 036607, (2008).
Bogoyavlenskii, O.I., Breaking solitons in (2+1)-dimensional integrable equations, Russian Math. Surveys. 45 1-86, (1990).
ZHOU, Y.B., Li, C., Application of modified (G'/G)-expansion method to traveling wave solutions for Whitham-Broer-Kaup-Like equations, Commun. Theoret. Phys. 51 664-670, (2009).
Song, M., Gao, J. and Guan, X., Application of the bifurcation method to the WhithamUBroerUKaup-Like equations, Math. Comput. Model. 55 688-696, (2012).
Xie, F.D., Yan, Z.Y. and Zhang, H.Q., Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations, Phys. Lett. A 285 76-80, (2001).
El-Sayed, S.M., Kaya, D., Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput. 167 1339-1349, (2005).
Yan, Z.Y., Zhang, H.Q., New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A. 252 291-296, (1999).
Zheng, X., Chen, Y. and Zhang, H., Generalized extended tanh-function method and its application to (1+1) dimensional dispersive long wave equation, Phys. Lett. A. 311 145-157, (2003).
Zhou, J., Tian, L., Fan, X., Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system, Nonlinear Anal. 11 3229-3235, (2010).
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).