Existence of solutions for a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions
Resumen
In this work we will study the eigenvalues for a fourth order elliptic equation with $p(x)$-growth conditions $\Delta^2_{p(x)} u=\lambda |u|^{p(x)-2} u$, under Neumann boundary conditions, where $p(x)$ is a continuous function defined on the bounded domain with $p(x)>1$. Through the Ljusternik-Schnireleman theory on $C^1$-manifold, we prove the existence of infinitely many eigenvalue sequences and $\sup \Lambda =+\infty$, where $\Lambda$ is the set of all eigenvalues.
Descargas
Citas
A.R. El Amrouss, S. El Habib, N. Tsouli, Existence of solutions for an eigenvalue problem with weight, Electronic Journal of Differential Equations, Vol. 2010(2010), No. 45, pp. 1-10, ISSN: 1072-6691.
J. Benedikt, On the Discreteness of the Dirichlet and Neumann p-Biharmonic problem, Abst. Appl. Anal.,vol 293, No 9, pp. 777-792(2004). .
P. Drabek, M. Otani, Global bifurcation result for the p-Biharmonic operator, Electronic Journal of Differential Equations, No 48, pp 1-19(2001).
A. El Khalil, S. Kellati, A. Touzani, On the spectrum of the p-Biharmonic operator, 2002- Fez conference on partial differencial Equations, Electronic Journal of Differential Equations, conference 09, pp. 161-170. (2002) .
M. Talbi, N. Tsouli, Existence and uniqueness of positive solution for a non homogeneous problem of fourth order with weight, 2005-Oujda International Conference On Nonlinear Analysis, Electronic Journal of Differential Equations, conference 14, pp. 231-240 (2006) .
K. Ben Haddouch, Z. El Allali, N. Tsouli, The third order spectrum of the p-Biharmonic operator with weight, Applicationes Mathematicae (Warsaw), DOI: 10.4064/am41-2-12, 41,2-3 (2014), pp. 247-255.
K. Ben haddouch, Z. El Allali, El Miloud Hssini, N. Tsouli, On the first eigensurface of the third order spectrum of the p-Biharmonic operator, Applied Mathematical Sciences, Vol. 8, 2014, no. 89, 4413 - 4424.
T.C. Halsey, Electrorheological fluids, Science 258(1992) 761-766.
M. Ruzicka, Electrorheological fluids; Modeling and Mathematical Theory, in: Lecture Note in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
X.Fan.Q.H.Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52(2003)-1852.
M.Milhailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplacian operator, Nonlinear Anal. T.M.A. 67(2007 1419-1425.
L.L. Wang, Y.H. Fan, W.G. Ge, existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Analysis (2009), vol. 71, no.9, pp. 4259-4270.
A. Ayoujil, A.R. El Amrouss, On the spectrum of fourth order elliptic equation with varianle exponent, Nonlinear Analysis 71(2009)4916-4926.
A. Ayoujil, A.R. El Amrouss, Continuous specrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electronic Journal of differential Equations, vol. 2011(2011), no. 24, pp. 1-12.
X.L. Fan, D. Zhao, On the space Lp(x)() and Wm,p(x)(), J. Math. Appl. 263(2001) 424-446.
X. L. Fan, X. Fan, A Knobloch-type result for p(x)-Laplacian systems, J. Math. App. 282(2003) 453-464.
J. H. Yao, Solution for Neumann boundary problems involving the p(x)-Laplacian operators, Nonlinear Anal. T.M.A. 68 (2008) 1271-1283 .
A. Szullkin, Ljusternick-Schnirelmann Theory on C1 Manifolds, Ann. Inst. Henri Poincaré, Anal. Non., 5 (1988), 119-139.
E. Zeidler, Nonlinear Function Analysis and its Applications, vol. II/B: Nonlinear Monotone Operators, Springer, New york, 1990.
A.R. El Amrouss, F. Moradi, M. Moussaoui, Existence and multiplicity of solutions for a p(x)-Biharmonic problem with Neumann boundary condition, preprint, ref. no. JPAMAA 0101015.
J.P.G. Azerero, I.P. Alfonso, Hardy inequalities and some critical elliptic and parabolic problems, Electronic.J.Differential Equations 144(1998)441-476.
R. B. Israel, R. A. Adams, Sobolev space, August 2002.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).