Limit analysis of an elastic thin oscillating layer

  • Jamal Messaho CRMEF Meknes
  • Abdelaziz Ait Moussa University Mohammed I

Resumen

The aim of this paper, is to study the limit behavior of the solution of a convex elasticity problem with negative power type, of a containing structure, an elastic thin oscillating layer of thickness depending of a small enough parameter. The epi-convergence method is considered to nd the limit problems with interface conditions.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jamal Messaho, CRMEF Meknes

KhenifraMaroc

Abdelaziz Ait Moussa, University Mohammed I

Faculty of Sciences

Department of Mathematics and Computer

Citas

E. Acerbi, G. Buttazzo and D. Percivale, Thin inclusions in linear elasticity : a variational approach. J. rein angew. Math. 386 (1988), 99-115.

A. Ait Moussa et C. Licht, Comportement asymptotique d’une plaque mince non linéaire. J. Math du Maroc No. 2 (1994), 1-16.

A. Ait Moussa and J.Messaho, Limit behavior of an oscillating thin layer. Electronic Journal of Differential Equations, Conference 14 (2006), 21-33.

A. Ait Moussa and J.Messaho, Asymptotic behavior of solutions on a thin plastic plate. Electronic Journal of Differential Equations, Vol (2009), No 34, 1-10.

H. Attouch, Variational convergence for functions and operators. Pitman Advance Publishing Program, 1984.

H. Brezis, Analyse fonctionnelle, Théorie et Applications. Masson(1992).

A. Brillard, Asymptotic analysis of nonlinear thin layers. International Series of Numerical Mathematics Vol 123 (1997).

E. De Giorgi, Convergence problems for functions and operators. Proceedings of the International Congress on "Recent Methods in Nonlinear analysis" 1978. De Giorgi, Mosco, Spagnolo Eds. Pitagora Editrice (Bologna) 1979.

J. F. Ganghoffer, A. Brillard and J. Schultz, Modelling of mechanical behaviour of joints bonded by a nonlinear incompressible elastic adhesive. European Journal of Mechanics. A/Solids Vol 16 (1997), No. 2, 255-276.

G. Geymonat, F. Krasucki and S. Lenci, Annalyse asymptotique du comportement d’un assemblage collé. C. R. Acad. Sci. Paris, t. 322 (1996), série 1, 1107-1112.

S. Lenci, F. Krasucki and G. Geymonat, Mathematical analysis of a bonded joint with a soft adhesive. Mathematics and Mechanics of Solid, 4 (1999), 201-225.

H. Phum Huy and E. Sanchez-Palencia, Phénoménes de transmission à travers des couches minces de conductivité élevée. Journal of Mathematical Analysis and Applications, 47 (1974), 284-309.

R. Temam, Problémes mathématiques en plasticité. Ed. Gauthier Villars, Paris, 1983.

Publicado
2015-09-03
Sección
Research Articles