On totally projective QTAG-modules characterized by its submodules
Keywords:
totally projective modules, almost totally projective modules, isotype submodules, separable submodules
Abstract
A $QTAG$-module $M$ is called almost totally projective if it has a weak nice system. Here we show that the isotype submodules of a totally projective module which are almost totally projective are precisely those that are separable. From this characterization it follows that every balanced submodule of a totally projective module is almost totally projective. Finally, in some special cases we settle the question of whether a direct summand of an almost totally projective module is again almost totally projective.Downloads
Download data is not yet available.
Published
2018-10-01
Issue
Section
Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).