Highest-weight vectors in tensor products of Verma modules for U_q(sl_2)
Resumen
We obtain an explicit basis for the subspace spanned by highest-weight vectors in a tensor product of two highest-weight modules for the quantized universal enveloping algebra of sl_2. The structure constants provide a generalization of the Clebsh-Gordan coefficients. As a byproduct, we give an alternative proof for the decomposition of these tensor products as direct sums of indecomposable modules and supply generators for all highest weight summands.Descargas
La descarga de datos todavía no está disponible.
Publicado
2018-10-01
Número
Sección
Articles
Derechos de autor 2017 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).