New results on blow-up of solutions for Emden-Fowler type degenerate wave equation with memory

Résumé

In this article we consider a new class of a Emden-Fowler type semilinear degenerate wave equation with memory. The main contributions here is to show that the memory lets the global solutions of the degenerate problem still non-exist without any conditions on the nature of growth of the relaxation function. This is to extend the paper in \cite{L11} for the dissipative case.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

A. Benaissa, D. Ouchenane and Kh. Zennir; Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear studies. Vol. 19, No. 4, pp. 523-535, 2012.

F. E. Browder; On non-linear wave equations. M. Z. 80. pp. 249-264 (1962).

M. M. Cavalcanti, L. H. Fatori and T. F. Ma; Attractors for wave equations with degenerate memory, J. Diff. Eq., 260 (2016), pp. 56-83.

S. Chandrasekhar; Introduction to the Study of Stellar Structure, Chap. 4. Dover, New York, 1957

C. M. Dafermos; An abstract Volterra equation with applications to linear viscoelasticity. J. Diff. Equations, 7 (1970), 554-569.

Dafermos C. M.; On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal., 29, (1968) 241-271.

C. M. Dafermos, H. P. Oquendo; Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(1970), 297-308.

Conti, Graffi, G. Sansone; Qualitative Methods in the Theory of Nonlinear Vibrations, Proc. Internat. Sympos. Nonlinear Vibrations, vol. II, 1961, pp. 172-189.

R. Emden, Gaskugeln; Anwendungen der mechanischen Warmetheorie auf Kosmologie und meteorologische Probleme, B. G.Teubner, Leipzig, Germany 1907.

R. H. Fowler; The form near infinity of real, continuous solutions of a certain differential equation of the second order, Quart. J. Math., 45 (1914), pp. 289-350.

R. H. Fowler; The solution of Emden’s and similar differential equations, Monthly Notices Roy. Astro. Soc., 91 (1930), pp. 63-91.

R. H. Fowler; Some results on the form near infinity of real continuous solutions of a certain type of second order differential equations, Proc. London Math. Soc., 13 (1914), pp. 341-371.

R. H. Fowler; Further studies of Emden’s and similar differential equations, Quart. J. Math., 2 (1931), pp. 259-288.

R. Glassey; Finite-time blow-up for solutions of nonlinear wave equations. M. Z. 177 (1981), pp. 323-340.

F. John; Blow-up for quasilinear wave equations in three space dimensions. Comm.Pure. Appl. Math. 36 (1981) pp. 29-51.

M. L. J. Hautus; Uniformly asymptotic formulas for the Emden-Fowler differential equation, J. Math. Anal. Appl., 30 (1970), pp. 680-694.

S. Klainerman; Global existence for nonlinear wave equations. Comm.Pure Appl. Math. 33 (1980), pp. 43-101.

S. Klainerman, G. Ponce; Global, small amplitude solutions to nonlinear evolution equations. Comm. Pure Appl. Math. 36 (1983), pp. 133-141.

M. R. Li; Nonexistence of global solutions of Emden-Fowler type semilinear wave equations with non-positive energy. Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 93, pp. 1–10.

M. R. Li; Estimates for the life-span of the solutions of some semilinear wave equations. ACPAA. Vol. 7 (2008), No. 2, pp. 417-432.

M. R. Li; Existence and uniqueness of local weak solutions for the Emden–Fowler wave equation in one dimension, Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 145, pp. 1–10.

D. Ouchenane, Kh. Zennir and M. Bayoud; Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukrainian Mathematical Journal, Vol. 65, No. 7(2013), 723-739.

R. Racke; Lectures on nonlinear Evolution Equations: Initial Value Problems. Aspects of Math. Braunschweig Wiesbaden Vieweg (1992).

A. Ritter; Untersuchungen uber die Hohe der Atmosphare und die Konstitution gasformiger Weltkorper, 18 articles, Wiedemann Annalen der Physik, 5-20, pp. 1878-1883.

W. A. Strauss; Nonlinear Wave Equations, AMS Providence(1989). Dimensions. J. Differen- tial Equations 52 (1984), pp.378-406.

T. Sideris; Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differential Equations 52(1982). pp. 303-345.

W. Thompson (Lord Kelvin); On the convective equilibrium of temperature in the atmosphere, Manchester Philos. Soc. Proc., 2 (1860-62), pp.170-176; reprint, Math. and Phys. Papers by Lord Kelvin, 3 (1890), pp. 255-260.

Kh. Zennir and A. Guesmia; Existence of solutions to nonlinear kth-order coupled Klein- Gordon equations with nonlinear sources and memory term. Applied Mathematics E-Notes, 15(2015), 121-136.

Kh. Zennir and S. Zitouni; On the absence of solutions to damped system of nonlinear wave equations of Kirchhoff-type. Vladikavkaz Mathematical Journal, 17(4), (2015), 44-58.

Publiée
2020-10-08
Rubrique
Articles