Hausdorff measure of noncompactness of matrix mappings on Cesàro spaces

Résumé

In this study we establish some identities or estimates for operator norms and the Hausdorff measure of noncompactness of certain operators on spaces |C_{α}|_{k}, which have more recently been introduced in [14]. Further, by applying the Hausdorff measure of noncompactness, we establish the necessary and sufficient conditions for such operators to be compact and so the some well known results are generalized.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

M. Basarır, E. E. Kara and S. Konca, On some new weighted Euler sequence spaces and compact operators, Math. Inequal. Appl., 17 (2) (2014), 649-664.

M. Basarır and E. E. Kara, On the mth order difference sequence space of generalized weighted mean and compact operators, Acta Math. Sci., 33 (2013), 797-813.

L. S. Bosanquet, Rewiev on G. Sunouchi’s paper ”Notes on Fourier Analysis, 18, absolute summability of a series with constant terms”, Math. Rev., 11 (1950), 654.

L. S. Bosanquet, Note on convergence and summability factors I , J. London Math. Soc., 20 (1945), 39-48.

G. Das, A Tauberian theorem for absolute summability, Proc. Cambridge Philos., 67 (1970), 321-326.

M. Fekete, Zur theorie der divergenten reihen., Math. `es Termezs `Ertesito (Budapest), 29 (1911), 719-726.

T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957) 113-141.

E. E. Kara, M. Basarır and M. Mursaleen, Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers, Kragujevac J. Math., 39(2) (2015) 217-230.

E. E. Kara and M. Basarır, On some Euler B(m) difference sequence spaces and compact operators, J. Math. Anal. Appl., 379 (2011), 499-511.

E. Kogbetliantz, Sur lesseries absolument sommables par la methods des moyannes arithmetiques, Bull. Sci. Math., 49 (1925), 234-256.

I. J. Maddox, Elements of functional analysis, Cambridge University Press, London, New York, 1970.

E. Malkowsky, F. Ozger, and A. Alotaibid, Some Notes on Matrix Mappings and their Hausdorff Measure of Noncompactness, Filomat, 28 (5) (2014), 1059-1072.

E. Malkowsky and V. Rakocevic, On matrix domain of triangles, Appl. Math. Comp., 189(2) (2007), 1146-1163.

E. Malkowsky and V. Rakocevic, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr), 9 (17) (2000), 143-234.

S. M. Mazhar, On the absolute summability factors of infinite series, Tohoku Math. J., 23 (1971), 433-451.

M. R. Mehdi, Summability factors for generalized absolute summability I, Proc. London Math. Soc., (3),10 (1960), 180-199.

C. Orhan and M. A. Sarıgol, On absolute weighted mean summability, Rocky Mountain J. Math.,23 (3) (1993), 1091-1097.

M. Mursaleen, and A. K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces,Oper. Matrices, 5 (3) (2011), 473-486.

M. Mursaleen and A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal.: TMA, 73 (8) (2010), 2541-2557.

M. Mursaleen and A. K. Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comp. and Math. with App., 60 (2010), 1245-1258.

V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.

M. A. Sarıgol, Spaces of Series Summable by Absolute Ces`aro and Matrix Operators, Commun. Math. Appl., 7(1) (2016), 11-22.

M. A. Sarıgol, Extension of Mazhar’s theorem on summability factors, Kuwait J. Sci.,42(2) (2015), 28-35.

M. A. Sarıgol, Matrix operators on Ak, Math. Comput. Modelling, 55 (2012), 1763-1769.

M. A. Sarıgol, Matrix transformations on fields of absolute weighted mean summability, Studia Sci. Math. Hungar., 48 (3) (2011), 331-341.

M. A. Sarıgol, On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc., 118, (1993), 485-488.

M. A. Sarıgol, A note on summability, Studia Sci. Math. Hungar., 28 (1993), 395-400 .

M. A. Sarıgol, On absolute weighted mean summability methods, Proc. Amer. Math. Soc., 115 (1) (1992), 157-160.

M. A. Sarıgol, Necessary and sufficient conditions for the equivalence of the summability methods N, pn k and |C, 1|k, Indian J. Pure Appl. Math., 22(6) (1991), 483-489.

M. A. Sarıgol, On difference sequence spaces, J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math.-Phys., 10 (1987), 63-71.

M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnis¨uberischt, Math Z.,154 (1977), 1-16.

G. Sunouchi, Notes on Fourier Analysis, 18, absolute summability of a series with constant terms, Tohoku Math. J., 1 (1949), 57-65.

Publiée
2020-10-07
Rubrique
Articles