C*-algebras generated by isometries and true representations
Resumen
Let (G; P) be a quasi-lattice ordered group. In this paper we present a modied proof of Laca and Raeburn's theorem about the covariant isometric representations of amenable quasi-lattice ordered groups [7, Theorem 3.7], by following a two stage strategy. First, we construct a universal covariant representation for a given quasi-lattice ordered group (G; P) and show that it is unique. The construction of this object is new; we have not followed either Nica's approach in [10] or Laca and Raeburn's approach in [7], although all three objects are essentially the same. Our approach is a very natural one and avoids some of the intricacies of the other approaches. Then we show if (G; P) is amenable, true representations of (G; P) generate C-algebras which are canonically isomorphic to the universal object.
Descargas
Derechos de autor 2019 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).