Existence of some classes of N(k)-quasi Einstein manifolds

Resumen

The object of the present paper is to study some classes of N(k)-quasi Einstein manifolds. The existence of such manifolds are proved by giving non-trivial physical and geometrical examples. It is also proved that the characteristic vector field of the manifold is killing as well as parallel unit vector fields under certain curvature
restrictions.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Sudhakar Kumar Chaubey, Shinas College of Technology

Section of Mathematics

Department of Information Technology

Citas

Yano, K. and Kon, M., Structures on manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Singapore, (1984).

Kenmotsu, K., A class of almost contact Riemannian manifolds, Tˆohoku Math. J. 24, 93-103, (1972).

Hamilton, R. S., The Ricci flow on surfaces, Contemporary Mathematics 71, 237-261, (1988).

Deszcz, R., Glogowska, M., Hotlo´s, M. and Sent¨urk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, Ann. Univ. Sci. Budap. Rolando E¨otv¨os, Scct. Math. 41, 151-164, (1998).

Chaki, M. C. and Maithy, R. K., On quasi Einstein manifolds, Publ. Math. Debrecen 57, (3-4), 297-306, (2000).

Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203 Birkhauser Boston , Inc., Boston, MA, (2002).

Okumura, M., Some remarks on space with a certain contact structure, Tohoku Math. J. 14, 135-145, (1962).

Tanno, S., Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40, 441-417, (1988).

Tripathi, M. M. and Kim, J. S., On N(k)−quasi Einstein manifolds, Commun. Korean Math. Soc. 22, (3), 411-417, (2007).

Ozgur, C. and Tripathi, M. M., On the concircular curvature tensor of an N(k)−quasi Einstein manifolds, Math. Pann. 18, (1), 95-100, (2007).

Ozgur, C. and Sular, S., On N(k)−quasi Einstein manifolds satisfying certain conditions, Balkan J. Jeom. Appl. 13, (2), 74-79, (2008).

Ozgur, C., N(k)−quasi Einstein manifolds satisfying certain conditions, Chao, Solitons Fractals 38, (5), 1373-1377, (2008).

Singh, R. N., Pandey, M. K. and Gautam, D., On N(k)−quasi Einstein manifolds, Novi Sad J. Math. 40, (2), 23-28, (2010).

De, A., De, U. C. and Gazi, A. K., On a class of N(k)−quasi Einstein manifolds, Commun. Korean Math. Soc. 26, (4), 623-634, (2011).

Taleshian, A. and Hosseinzadeh, A. A., Investigation of some conditions on N(k)−quasi Einstein manifolds, Bull. Malays. Math. Sci. Soc. 34, (3), 455-464, (2011).

Deszcz, R., Hotlo´s, M. and Senturk, Z., On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math. 27, 375-389, (2001).

Mantica, C. A. and Suh, Y. J., Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds, Balkan Journal of Geometry and its Applications 16, 66-77, (2011).

Chaubey, S. K., Existence of N(k)−quasi Einstein manifolds, Facta Universitatis (NIS) Ser. Math. Inform. 32, (3), 369-385, (2017).

Crasmareanu, M., Parallel tensors and Ricci solitons in N(k)−quasi Einstein manifolds, Indian Journal of Pure and Applied Mathematics 43, (4), 359-369, (2012).

Yang, Y. and Xu, S., Some conditions of N(k)−quasi Einstein manifolds, Int. J. Dig. Cont. Tech. Appl. 6, (8), 144-150, (2012).

Hosseinzadeh, A. A. and Taleshian, A., On conformal and quasi conformal curvature tensors of an N(k)−quasi Einstein manifolds, Commun. Korean Math. Soc. 27, (2), 317-326, (2012).

Debnath, P. and Konar, A., On quasi Einstein manifold and quasi Einstein space time, Differential Geometry-Dynamical Systems 12, 73-82, (2010).

Chaki, M. C., On generalized quasi Einstein manifolds, Publ. Math. Debrecen 58, (4), 683-691, (2001).

De, U. C. and Ghosh, G. C., On quasi Einstein manifolds, Period. Math. Hungar. 48, (1-2), 223-231, (2004).

Guha, S. R., On quasi Einstein and generalized quasi Einstein manifolds, Facta Univ. Ser. Mech. Automat. Control Robot 3, (14), 821-842, (2003).

Shaikh, A. A., Yoon, Dae Won and Hui, S. K., On quasi-Einstein space times, Tsukuba J. Math. 33, (2), 305-326, (2009).

Shaikh, A. A., Young, Ho Kim and Hui, S. K., On Lorentzian quasi-Einstein manifolds, J. Korean Math. Soc. 48, (4), 669-689, (2011).

Mallick, S. and De, U. C., Z tensor on N(k)−quasi Einstein manifolds, Kyungpook Math. J. 56, 979-991, (2016).

Chen, B. Y. and Yano, K., Hyper surfaces of a conformally flat space, Tensor N. S. 26, 318-322, (1972).

Chaubey, S. K. and Ojha, R. H., On the m−projective curvature tensor of a Kenmotsu manifold, Differential Geometry - Dynamical Systems 12, 52-60, (2010).

Yadav, S. K., Chaubey, S. K. and Suthar, D. L., Certain results on almost Kenmotsu (, μ, )−spaces, Konuralp Journal of Mathematics 6, (1), 128-133, (2018).

Chaubey, S. K. and Yadav, S. K., Study of Kenmotsu manifolds with semi-symmetric metric connection, Universal Journal of Mathematics and Applications 1, (2), 89-97, (2018).

Chaubey, S. K. and Ojha, R. H., On a semi-symmetric non-metric connection, Filomat 26, (2), 63-69, (2012).

Chaubey, S. K. and Prasad, C. S., On generalized −recurrent Kenmotsu manifolds, TWMS Journal of Applied and Engineering Mathematics 5, (1), 1-9, (2015).

Chaubey, S. K., Prakash, S. and Nivas, R., Some properties of m−projective curvature tensor in Kenmotsu manifolds, Bulletin of Mathematical Analysis and Applications 4, (3), 48-56, (2012).

Mantica, C. A. and Molinari, L. G., Weakly Z-symmetric manifolds, Acta Math. Hunger. 135, 80-96, (2012).

Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, (1953).

Eisenhart, L. P., Riemannian Geometry, Princeton University Press, (1949).

Ishii, Y., On conharmonic transformations, Tensor N. S. 7, 73-80, (1957).

Baishya, K. K. and Chowdhury, P. R., On generalized quasi-conformal N(k, μ)-manifolds, Commun. Korean Math. Soc. 31, (1), 163-176, (2016).

Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistics significance I, Yokohama Mathematical Journal 18, 105-108, (1970).

Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2, 161-184, (1968).

Cartan, E., La deformation des hypersurfaces dand l’espace conforme reel n 5 dimensions, Bull. Soc. Math. France 45, 57-121, (1917).

Schouten, J. A., Uber die konforme Abbildung n−dimensionaler Mannigfaltigkeiten mit quadratischen Massbestimmung auf eine Mannigfaltigkiet mit euklidischer Massbestimmung, Math. Z. 11, 58-88, (1921).

Kruchkovich, G. I., On spaces of V. F. Kagan, in: V. F. Kagan, Subprojective spaces, Moscow, 163-198, (1961). (in Russian).

Publicado
2020-10-11
Sección
Research Articles