General decay of solutions of a thermoelastic Bresse system with viscoelastic boundary conditions
Resumen
In this paper we consider a multidimensional thermoviscoelastic system of Bresse type where the heat conduction is given by Green and Naghdi theories. For a wider class of relaxation functions, We show that the dissipation produced by the memory eect is strong enough to produce a general decay results. We establish a general decay results, from which the usual exponential and polynomial decay rates are only special cases.
Descargas
Citas
Alabau Boussouira, F., Almeida Junior, D. S., and Rivera, J. E. M. , Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481–498.
Almeida Junior, D. S., Santos, M. L., Soufyane, A., Asymptotic behavior to Bresse system with past history, Quarterly of Applied Mathematics, 73 (2015), 23–54.
Aouadi, M., Soufyane, A., Decay of the Timoshenko beam with thermal effect and memory boundary conditions, Journal of Dynamical and Control Systems, 19, 1, 2013, 33-46.
Bae, J. J., On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition on the boundary, Nonlin. Anal., 61 (2005), 351–372.
Cattaneo, C., Sulla conduzione del calore [On heat conduction], Atti. Sem. Mat. Fis. Univ. Modena., 948; 3: 83-101.
Cavalcanti, M. M., Domingos Cavalcanti, V. N.,Santos, M. L., Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 50 (2004), 439–465.
Cavalcanti M. M. and Guesmia A, General decay rates of solutions to a nonlinear wave equation with boundary conditions of memory type, Differential Integral Equations, 18 (2005), 583–600.
Fatori, L. H., Rivera, J. E. M., Soriano, J. A. S., Bresse system with indefinite damping, Jour. Math. Anal. Appl., 387 (2012), 284–290.
Feitosa, A. J. R., Oliveira, M. L., Milla Miranda, M., Nonlinear boundary stabilization for Timoshenko beam system, J. Math. Anal. Appl., 428 (2015) 194-216
A. J. R. Feitosa, M. Milla Miranda and M. L. Oliveira, Nonlinear boundary stabilization for Timoshenko beam system, Jour. Math. Anal. Appl., 428 (2015), 194–216.
J. Ferreira, D. C. Pereira, C. A. Rapaso and M. L. Santos, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlin. Anal., 54 (2003), 959–976.
Guesmia, A., Kafini, M., Bresse system with infinite memories, Math. Meth. Appl. Sci., 38 (2015), 2389–2402.
Green, A. E., Naghdi, P. M., A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. London A., 432, 1991, 171–194.
Green, A. E., Naghdi, P. M., On undamped heat waves in an elastic solid, J. Therm. Stresses., 1992; 15 :253–264.
J. R. Kang, General decay for Kirchhoff plates with a boundary condition of memory type, Boundary Value Problems, 2012 (2012), 1–11.
Lagnese, J. E., Leugering, G., Schmidt, J. P. G., Modelling Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkh´’auser Boston, Inc., Boston, MA, 1994.
Liu, Z., Rao, B., Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54–69.
Fatori,L. H., Rivera, J. E. M., Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math 75 (2010), no. 6, 881-904.
Kang,J. R., General decay for Kirchhoff plates with a boundary condition of memory type, Boundary Value Problems, 2012 (2012), 1–11.
Khemmoudj, A., Hamadouche, T., Boundary stabilization of a Bresse-type system, Math. Meth. Appl. Sci., 39 (2016), 3282–3293.
Khemmoudj, A., Hamadouche, T., Boundary stabilization of a Bresse-type system, Discrete and Continuous Dynamical systems, Series A, DCDS A, 37, 9, (2017), 4857–4876.
Messaoudi, S. A., Soufyane, A., Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlin. Anal., 67 (2007), 2107–2121.
Messaoudi, S. A., Soufyane, A., General decay of solutions of a wave equation with a boundary control of memory type, Nonlin. Anal.,RWA , 11 (2010), 2896–2904.
Messaoudi, S. A., Soufyane, A., Boundary stabilization of memory type in thermoelasticity of type III, Appl. Anal., 87 (2008), 13-28.
Messaoudi, S. A., Mustafa, M. I., Energy decay rates for a Timoshenko system with viscoelastic boundary conditions, Appl. Math. Comput., 218 (2012), 9125–9131.
Messaoudi, S. A., Al-Shehri, A., General boundary stabilization of memory type thermoelasaticity, J. Math. Phys., 51, 103514 (2010);doi:10.1063/1.3496995.
Mustafa, M. I., On the boundary control of thermoviscoelastic systems of type III conditions, Applicable Analysis.(2015)DOI:10.1080/00036811.2014.999766
N. Najdi and A. Wehbe, Weakly locally thermal stabilization of bresse system, Electron. J. Diff. Equ., 182, 2014, 1-19.
Noun, N., Wehbe, A., Stabilisation faible interne locale de syst`eme ´elastique de Bresse, English, with English and French summaries, C. R. Math. Acad. Sci. Paris, 350 (2012), 493–498.
Quintanilla, R. and Racke, R., Stability in thermoelasticity of type III,Discrete and Continuous Dynamical Systems B., 3 (2003), 383–400.
Portillo Oquendo, H., Munoz Rivera, J. E., Santos, M. L., Asymptotic behavior to a von K´arm´an plate with boundary memory conditions, Nonlinear Analysis, 62 (2005), 1183–1205.
Said Houari, B., Hamadouche, T., The Cauchy problem of the Bresse system in thermoelasticity of type III, Applicable Analysis., DOI:10.1080/00036811.2015.1089237
Santos, M. L., Asymptotic behavior of solutions to wave equations with a memory conditions at the boundary, Electron. Jour. Differ. Equ., 73 (2001), 1–11.
Santos, M. L., Decay rates for solutions of a Timoshenko system with a memory condition at the boundary, Abstr. Appl. Anal., 7 (2002), 531–546.
Santos M. L., Soufyane A., General decay to a von Karman plate system with memory boundary conditions, Diff. Int. Equ,., 24 (2011), 69–81.
Santos, M. L., Tavares, C. C. S., On the Kirchhoff plates equations with thermal effects and memory boundary conditions, Appl. Math. Comput., 213 (2009), 25–38.
Zhang X., Zuazua E., Decay of solutions of the system of thermoelasticity of type III, Commun. Contemp. Math., 5 (2003), 25-83.
Derechos de autor 2020 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).