Elliptic curve over a finite ring generated by 1 and an idempotent element $e$ with coefficients in the finite field $\mathbb{F}_{3^d}$
Resumen
An elliptic curve over a ring $\mathcal{R}$ is a curve in the projective plane $\mathbb{P}^{2}(\mathcal{R})$ given by a specific equation of the form $f(X, Y, Z)=0$ named the Weierstrass equation, where $f(X, Y, Z)=Y^2Z+a_1XYZ+a_3YZ^2-X^3-a_2X^2Z-a_4XZ^2-a_6Z^3$ with coefficients $a_1, a_2, a_3, a_4, a_6$ in $\mathcal{R}$ and with an invertible discriminant in the ring $\mathcal{R}.$ %(see \cite[Chapter III, Section 1]{sil1}). In this paper, we consider an elliptic curve over a finite ring of characteristic 3 given by the Weierstrass equation: $Y^2Z=X^3+aX^2Z+bZ^3$ where $a$ and $b$ are in the quotient ring $\mathcal{R}:=\mathbb{F}_{3^d}[X]/(X^2-X),$ where $d$ is a positive integer and $\mathbb{F}_{3^d}[X]$ is the polynomial ring with coefficients in the finite field $\mathbb{F}_{3^d}$ and such that $-a^3b$ is invertible in $\mathcal{R}$.Descargas
Citas
W. Bosma, H.W. Lenstra, Complete System of Two Addition Laws for Elliptic curve, Journal of Number Theory (1995). https://doi.org/10.1006/jnth.1995.1088
A. Chillali, Cryptography over elliptic curve of the ring Fq[ε] , ε 4 = 0, World Academy of Science, Engineering and Technology, (2011).
M. H. Hassib, A. Chillali, The ∼π homomorphism of Ea,b(F3d [ε]), AIP publishing, vol.1557, (2013) 12-14.
M. H. Hassib, A. Chillali, M. Abdou Elomary, Elliptic curve over a chain ring of characteristic 3, (International Workshop of Algebra and Applications, 2014, FST Fez, Morocco), Journal of Taibah University for Science (2015). https://doi.org/10.1016/j.jtusci.2015.02.001
M. Zeriouh, A. Chillali, A. Boua, Cryptography based on the matrices, Boletim da Sociedade Paranaense de Matematica, Vol 37, No 3 (2019) 75-83. https://doi.org/10.5269/bspm.v37i3.34542
M. Sahmoudi, A. Chillali, Key Exchange over Particular Algebraic Closure Ring, Tatra Mountains Mathematical Publications, Vol 70, (2017) 151-162. https://doi.org/10.1515/tmmp-2017-0024
J. H. Silverman, Advanced topics in the arithmetic of elliptic curve, Graduate Texts in Mathematics, Vol 151, Springer, 1994. https://doi.org/10.1007/978-1-4612-0851-8
M.Virat, Courbe elliptique sur un anneau et applications cryptographiques, Nice-Sophia Antipolis, (Th'ese Docteur en Sciences), 2009.
Derechos de autor 2021 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).