Existence of weak solutions for second-order boundary-value problems of Kirchhoff-type with variable exponents
Resumen
In this paper, we investigate the existence of multiple solutions
for a second-order boundary value problems of Kirchhoff-type
equation involving a $p(x)$-Laplacian.
Descargas
Citas
C. O. Alves, F. J. S. A. Correa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
G. Bonanno, A. Chinnı, Discontinuous elliptic problems involving the p(x)−Laplacian, Math. Nachr. 284 (2011), 639-652 https://doi.org/10.1002/mana.200810232
F. Cammaroto, A. Chinnı, B. Di Bella, Multiple solutions for a Neumann problem involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009), 4486-4492. https://doi.org/10.1016/j.na.2009.03.009
G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343(2008), 1166-1176. https://doi.org/10.1016/j.jmaa.2008.01.049
G. Bonanno, B. Di Bella and D. O. Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl. 62 (2011), 1862- 1869. https://doi.org/10.1016/j.camwa.2011.06.029
G. Bonanno, G. D'Aguı and A. Sciammetta, One-dimensional non- linear boundary value problems with variable exponent, Discrete and continuous Dynamical Systems, Series S, 11(2) (2018), 179-191. https://doi.org/10.3934/dcdss.2018011
G. Bonanno, B. Di Bella and D. O. Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl. 62 (2011), 1862-1869. https://doi.org/10.1016/j.camwa.2011.06.029
A. Cabada, J.A. Cid and L. Sanchez, Positivity and lower and upper solutions for for fourth-order boundary value problems, Nonlinear Anal. 67 (2007), 1599-1612. https://doi.org/10.1016/j.na.2006.08.002
G. D'Aguı, Second-order boundary-value problems with variable exponent, Electron. J. Differential Equations, Vol. 2014 (2014), No. 68, 1-10.
L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017 Springer-Verlag, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
X. L. Fan, X. Y. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , Nonlinear Anal. 59 (2004), 173-188. https://doi.org/10.1016/S0362-546X(04)00254-8
X. L. Fan, D. Zhao, On the spaces L p(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
S. Heidarkhani, S. Moradi and D. Barill, Existence results for second- order boundary-value problems with variable exponents, Nonlinear Anal. (RWA), 44 (2018), 40-53. https://doi.org/10.1016/j.nonrwa.2018.04.003
S. Heidarkhani, S. Moradi and S. A. Tersian, Three solutions for second-order boundary-value problems with variable exponents Electronic Journal of Qualitative Theory of Differential Equations 13 2018, 1-19. https://doi.org/10.14232/ejqtde.2018.1.33
S. Heidarkhani, A. Salari, G. Caristi, D. Barilla, Perturbed nonlocal fourth order equations of Kirchhoff type with Navier boundary conditions, Bound. Value Probl. 2017 (2017), 86. https://doi.org/10.1186/s13661-017-0817-6
G. Kirchhoff, Vorlesungen uber mathematische Physik, Mechanik. Teubner, Leipzig (1883).
O. Kovacik, J. Rakosnık, On the spaces Lp(x) and W1,p(x), Czechoslovak Math. 41 (1991), 592-618. https://doi.org/10.21136/CMJ.1991.102493
L. Li, C- L. Tang, Existence of three solutions for (p, q)-biharmonic systems, Nonlinear Anal. TMA 73 (2010), 796-805. https://doi.org/10.1016/j.na.2010.04.018
L. Li, C- L. Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, Nonlinear Anal. TMA 72 (2010), 1339-1347. https://doi.org/10.1016/j.na.2009.08.011
M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplacian operator, Nonlinear Anal. 67 (2007), 1419-1425. https://doi.org/10.1016/j.na.2006.07.027
G. Molica Bisci, D. Repovs, Multiple solutions of p-biharmonic equations with Navier boundary conditions, Complex Var. Elliptic Equ. 59 (2014), 271-284. https://doi.org/10.1080/17476933.2012.734301
J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983. https://doi.org/10.1007/BFb0072210
C. Qian, Z. Shen, M. Yang, Existence of solutions for p(x)-Laplacian nonhomogeneous Neumann problems with indefinite weight, Nonlinear Anal. 11 (2010), 446-458. https://doi.org/10.1016/j.nonrwa.2008.11.019
B. Ricceri, A further three critical points theorem, Nonlinear Anal. TMA 71 (2009), 4151-4157. https://doi.org/10.1016/j.na.2009.02.074
X. J. Wang, R. Yuan, Existence of periodic solutions for p(t)-Laplacian systems, Nonlinear Anal. 70 (2009), 866-880. https://doi.org/10.1016/j.na.2008.01.017
V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987), 33-66. https://doi.org/10.1070/IM1987v029n01ABEH000958
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).