Optimal correction of infeasible equations system as Ax + B|x|= b using ℓ p-norm regularization

  • Fakhrodin Hashemi University of Guilan
  • Saeed Ketabchi University of Guilan

Resumen

Optimal correction of an infeasible equations system as Ax + B|x|= b leads into a non-convex fractional problem. In this paper, a regularization method(ℓp-norm, 0 < p < 1), is presented to solve mentioned fractional problem. In this method, the obtained problem can be formulated as a non-convex and nonsmooth optimization problem which is not Lipschitz. The objective function of this problem can be decomposed as a difference of convex functions (DC). For this reason, we use a special smoothing technique based on DC programming. The numerical results obtained for generated problem show high performance and the effectiveness of the proposed method.

Descargas

La descarga de datos todavía no está disponible.

Citas

P. Amaral, L. M. Fernandes, J. Judice, and H. D. Sherali, On optimal zero-preserving corrections for inconsistent linear systems, Journal of Global Optimization 45, 645-666, (2009). https://doi.org/10.1007/s10898-009-9403-5

P. Amarala, J. Judice, H. D. Sherali, A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints, Computers and Operations Research 35, 1494-1509, (2008). https://doi.org/10.1016/j.cor.2006.08.007

F. J. A. Artacho, R. M. T. Fleming, and P. T. Vuong, Accelerating the DC algorithm for smooth functions, Mathematical Programming 169, 95-118, (2018). https://doi.org/10.1007/s10107-017-1180-1

G. Alefeld, X. Chen, A regularized projection method for complementarity problems with non-Lipschitzian functions, Math. Comput 77, 379-395, (2008). https://doi.org/10.1090/S0025-5718-07-02025-X

M. Behboodi-Kahoo, S. Ketabchi, Parametric approach for correcting inconsistent linear equality system, Optimization Methods and Software 29(6), 1317-1322, (2014). https://doi.org/10.1080/10556788.2014.885520

A. Beck, A. Ben-Tal, On the solution of the tikhoniv regularization of the total least square problem, SIAM J. On Opt 17 (1), 98-118, (2006). https://doi.org/10.1137/050624418

Y. Censor, A. Ben-Israel, Y. Xiao, and J. M. Galvin, On linear infeasibility arising in intensity-modulated radiation therapy invers planning, Linear Algebra Appl 428, 1406-1420, (2008). https://doi.org/10.1016/j.laa.2007.11.001

X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program. 134, 71-99, (2012). https://doi.org/10.1007/s10107-012-0569-0

R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Proc. Lett 14, 707-710, (2007). https://doi.org/10.1109/LSP.2007.898300

X. Chen, F. Xu, Y. Ye, Lower bound theory of nonzero entries in solutions of l2 − lp minimization, SIAM J. Sci. Comput 32 (2012) 2832-2852. https://doi.org/10.1137/090761471

X. Chen, W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM J. Imaging Sci 3, 765-790, (2010). https://doi.org/10.1137/080740167

W. Dinkelbach, On nonlinear fractional programming, Managment Science 131, 492-498, (1967). https://doi.org/10.1287/mnsc.13.7.492

E. D. Dolan, J. J. More, Benchmarking optimization software with performance profiles, Mathematical Programming 91 (2), 201-213, (2002). https://doi.org/10.1007/s101070100263

F. Hashemi, S. Ketabchi, lp-norm regularization method (0 < p < 1) and DC programming for correction system of inconsistency linear inequalities, Bull. Iran. Math. Soc. (2018). https://doi.org/10.1007/s41980-018-0170-2

S. Ketabchi, H. Moosaei, S. Fallahi, Optimal error correction of the absolute value equation using a gentic algorithm, Mathematical and Computer Modelling 57, 2339-2342, (2013). https://doi.org/10.1016/j.mcm.2011.11.068

S. Ketabchi, H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side, Computers and Mathematics with Applications 64, 1882-1885, (2012). https://doi.org/10.1016/j.camwa.2012.03.015

S. Ketabchi, H. Moosaei, Optimal error correction and methods of feasible directions, J. Optim. Theory Appl 154, 209-216, (2012). https://doi.org/10.1007/s10957-012-0009-6

S. Ketabchi, H. Moosaei, S. Fallahi, Optimal correction of infeasible system in linear equality via Genetic algorithm, Applications and Applied Mathematics: An International Journal 5 (2), 1585-1591, (2010).

O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl. 36, 43-53, (2007). https://doi.org/10.1007/s10589-006-0395-5

H. Moosaei, S. Ketabchi, P. M. Pardalos, Tikhonov regularization for infeasible absolute value equations, Optimization 65, 1531-1537, (2016). https://doi.org/10.1080/02331934.2016.1154963

A. Nekvinda, L. Zajicek, A simple proof of the rademacher theorem, Casopis pro pestovani matematiky, 113 (4), 337-341, (1988). https://doi.org/10.21136/CPM.1988.118346

J. Nocedal, S. J. Wright, Numerical Optimization, (2nd edition), Springer, New York, (2006).

J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Lin. Mult. Algeb 52, 421-426, (2004) https://doi.org/10.1080/0308108042000220686

M. Salahi, A short note on min x∈Rn ((kAx − bk 2 ) (1 + kxk 2)), Appl. Math. comput 212, 70-272, (2009). https://doi.org/10.1016/j.amc.2009.01.060

Publicado
2021-12-20
Sección
Articles