Korovkin-type approximation theorem for Bernstein Stancu operator of rough statistical convergence of triple sequence

  • Ayten Esi Adiyaman University
  • Mustafa Kemal Ozdemir Inonu University
  • Nagarajan Subramanian SASTRA University

Resumen

We obtain a Korovkin-type approximation theorem for Bernstein Stancu polynomials of rough statistical convergence of triple sequences of positive linear operators of three variables from $H_{\omega}\left( K\right) $ to $C_{B}\left( K\right) $, where $K=[0,\infty)\times\lbrack0,\infty )\times\lbrack0,\infty)$ and $\omega$ is non-negative increasing function on $K$.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ayten Esi, Adiyaman University
Mathematics
Mustafa Kemal Ozdemir, Inonu University
Mathematics
Nagarajan Subramanian, SASTRA University
Mathematics

Citas

T. Acar and F. Dirik, Korovkin-type theorems in weighted Lp-spaces via summation process, The Scientifc World J. 2013, Article ID 534054, 6 pages (2013). https://doi.org/10.1155/2013/534054

F. Altomare and M. Campiti, Korovkin type approximation theory and its applications, Walter de Gruyter Publ., Berlin (1994). https://doi.org/10.1515/9783110884586

S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz., 29(3-4), 291-303 (2008). https://doi.org/10.1080/01630560802001064

S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz., 29(3-4), 283-290 (2008). https://doi.org/10.1080/01630560802001056

N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean, Appl. Math. Comput., 228, 162-169 (2014). https://doi.org/10.1016/j.amc.2013.11.095

S. Debnath, B. Sarma and B.C. Das, Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Optimiz., 6(1), 71-79 (2015).

O. Duman, A Korovkin type approximation throrems via I-convergence, Czechoslovak Math. J., 75(132), 367-375 (2007). https://doi.org/10.1007/s10587-007-0065-5

O. Duman, M. K. Khan and C. Orhan, A-statistical convergence of approximating operators, Math. Inequa. Appl., 6(4), 689-699 (2003). https://doi.org/10.7153/mia-06-62

E. Dundar and C. Cakan, Rough convergence of double sequences, Gulf J. Math., 2(1), 45-51 (2014).

A. J. Dutta, A. Esi and B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal., 4(2), 16-22 (2013).

O. H. H. Edely, S. A. Mohiuddine and A. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence, Appl. Math. Letters, 23(11), 1382-1387 (2010). https://doi.org/10.1016/j.aml.2010.07.004

A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Math. Structures, 1(2), 16-25 (2014).

A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global J. Math. Anal., 2(1), 6-10 (2014).

https://doi.org/10.14419/gjma.v2i1.1709

A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., 9(5), 2529-2534 (2015).

A. Esi and N. Subramanian, On triple sequence spaces of Bernstein operator of 3 of rough - statistical convergence in probability of random variables defined by Musielak-Orlicz function, Int. J. Open Probl. Comput. Sci. Math., 11(2), 62-70 (2018). https://doi.org/10.12816/0049063

A. Esi and N. Subramanian, Some triple difference rough Cesaro and lacunary statistical sequence spaces, J. Math. Appl., 41, 1-13 (2018). https://doi.org/10.7862/rf.2018.7

A. Esi, S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators, Appl. Math. Inf. Sci., 10(6), 2083-2086 (2016). https://doi.org/10.18576/amis/100610

A. Esi, 3-Statistical convergence of triple sequences on probabilistic normed space, Global J. Math. Anal., 1(2), 29-36 (2013). https://doi.org/10.14419/gjma.v1i2.885

H. Fast, Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951). https://doi.org/10.4064/cm-2-3-4-241-244

J. A. Fridy, On statistical convergence, Analysis, 5, 301-313 (1985). https://doi.org/10.1524/anly.1985.5.4.301

A. D. Gadjiev, The convergence problem for a sequence of positive linear operators an unbounded sets, and theorems analogous to that of P.P. Korovkin, Soviet Math. Dokl., 15, 1433-1436 (1974).

A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(1), 129-138 (2002). https://doi.org/10.1216/rmjm/1030539612

B. Hazarika, N. Subramanian and A. Esi, On rough weighted ideal convergence of triple sequence of Bernstein polynomials, Proccedings of the Jangjeon Mathematical Society, 21(3), 497-506 (2018).

P. P. Korovkin, Linear operators and the theory of approximation, India, Delhi (1960).

P. Malik and M. Maity, On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat., 27(1), 141-148 (2016). https://doi.org/10.1007/s13370-015-0332-9

S. A. Mohiuddine, An application of almost convergence in approximation theorems, Appl. Math. Letters, 24(11), 1856-1860 (2011). https://doi.org/10.1016/j.aml.2011.05.006

S. A. Mohiuddine and A. Alotaibi, Statistical convergence and approximation theorems for functions of two variables, J. Comput. Anal. Appl., 15(2), 218-223 (2013).

S. A. Mohiuddine and A. Alotaibi, Korovkin second theorem via statistical summability (C, 1), J. Inequa. Appl., 2013, Article 149, 9 pages (2013). https://doi.org/10.1186/1029-242X-2013-149

M. Mursaleen and A. Kilicman, Korovkin Second Theorem via B-Statistical A-Summability, Abstr. Appl. Anal., (2013). https://doi.org/10.1155/2013/598963

M. Mursaleen, F. Khan, A. Khan and A. Kilicman, Some approximation results for generalized Kantorovich-type operators. J. Inequal. Appl., 2013:585, 1-14 (2013). https://doi.org/10.1186/1029-242X-2013-585

H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz., 22, 199-222 (2001).

https://doi.org/10.1081/NFA-100103794

H. X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz., 23, 139-146 (2002).

https://doi.org/10.1081/NFA-120003675

H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz., 24, 285-301 (2003). https://doi.org/10.1081/NFA-120022923

A. Sahiner, M. Gurdal and F. K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8(2), 49-55 (2007).

A. Sahiner and B. C. Tripathy, Some I related properties of triple sequences, Selcuk J. Appl. Math., 9(2), 9-18 (2008).

T. Salat, On statistical convergence of real numbers, Math. Slovaca, 30, 139-150 (1980).

E. Savas and A. Esi, Statistical convergence of triple sequences on probabilistic normed space, Ann. Uni. Craiova, Math. Compu. Sci. Series, 39(2), 226-236 (2012).

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361-375 (1959). https://doi.org/10.1080/00029890.1959.11989303

N. Subramanian and A. Esi, On triple sequence space of Bernstein operator of 3 of rough -statistical convergence in probability defined by Musielak-Orlicz function of p-metric, Electron. J. Math. Anal. Appl., 6(1), 198-203 (2018).

B. C. Tripathy and R. Goswami, On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones J. Math., 33(2), 157-174 (2014). https://doi.org/10.4067/S0716-09172014000200003

Ayten Esi, M. Kemal Ozdemir and N. Subramanian, Korovkin-type approximation theorem for Bernstein Stancu operator of rough statistical convergence of triple sequence, 2nd International Conference of Mathematical Sciences, 31 July 2018-6 August 2018 (ICMS 2018) Maltepe University, Istanbul, Turkey.

Publicado
2019-10-14